Skip to main content
Log in

The magnetic concentration gradient force—Is it real?

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

There are suggestions in the electrochemical literature that a body force F ∇c acts when an electrolyte with a non-uniform concentration c of paramagnetic ions is subject to a uniform magnetic field. We demonstrate, experimentally and theoretically, that no such magnetic body force exists, to first order. A second-order correction associated with the demagnetizing field does lead to a very small concentration-dependent body force, which is not expected to produce any observable effect in electrochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Again the interfaces can be sharp or diffuse; diffuse interfaces are achieved by adding identical drops of water, or some other solvent, above each free interface.

  2. This can be written as F = μ 0 M j H j, or in component form, F i = μ 0 M jH j/∂xi, with a sum over repeated indices. It is only correct to write the Kelvin force as F = μ 0(M.)H when H and H are parallel. This is not usually the case; in Fig 1b, for example, H is horizontal, but H is vertical.

References

  1. Jiles D (1998) Introduction to magnetism and magnetic materials. Chapman & Hall, London

    Google Scholar 

  2. Fahidy TZ (1983) J Appl Electrochem 13:553

    Article  CAS  Google Scholar 

  3. Tacken RA, Janssen LJJ (1995) J Appl Electrochem 25:1

    Article  CAS  Google Scholar 

  4. Coey JMD (2003) Europhys News 36:246

    Article  Google Scholar 

  5. Pullins MD, Grant KM, White HS (2001) J Phys Chem B 105:8989

    Article  CAS  Google Scholar 

  6. Sugiyama A, Makoto H, Morimoto R, Nagai Y, Aogaki R (2004) Electrochim Acta 49:5115

    Article  CAS  Google Scholar 

  7. Ragsdale SR, Grant KM, White HS (1996) J Phys Chem 100:5913

    Article  CAS  Google Scholar 

  8. Aogaki R, Fueki K, Mukaibo T (1975) Denki Kagaku 43:509

    CAS  Google Scholar 

  9. Rhen FMF, Hinds G, Coey JMD (2004) Electrochem Commun 6:413

    Article  CAS  Google Scholar 

  10. Rhen FMF, Coey JMD (2006) J Phys Chem B 110:6274

    Article  CAS  Google Scholar 

  11. Rhen FMF, Fernandez D, Hinds G, Coey JMD (2006) J Electrochem Soc 153:J1

    Article  CAS  Google Scholar 

  12. Waskaas M (1993) J Phys Chem B 97:6470

    Article  CAS  Google Scholar 

  13. Waskaas M, Kharkats YI (1999) J Phys Chem B 103:4876

    Article  CAS  Google Scholar 

  14. Waskaas M, Kharkats YI (2001) J Electroanal Chem 502:51

    Article  CAS  Google Scholar 

  15. O’Brien RN, Santhanam KSV (1997) J Appl Electrochem 27:573

    Article  CAS  Google Scholar 

  16. Rabah KL, Chopart JP, Schloerb H et al (2004) J Electroanal Chem 571:85

    Article  CAS  Google Scholar 

  17. Chen S, Yang Y (2002) J Am Chem Soc 124:5280

    Article  CAS  Google Scholar 

  18. Yang Y, Grant KM, White HS, Chen S (2003) Langmuir 19:9446

    Article  CAS  Google Scholar 

  19. Krause A, Uhlemann M, Gebert A, Schultz L (2004) Electrochim Acta 49:4127

    Article  CAS  Google Scholar 

  20. Bund A, Kuehnlein HH (2005) J Phys Chem B 109:19845

    Article  CAS  Google Scholar 

  21. Leventis N, Dass A (2005) J Am Chem Soc 127:4988

    Article  CAS  Google Scholar 

  22. Grant KM, Hemmert JW, White HS (1999) Electrochem Commun 1:319

    Article  CAS  Google Scholar 

  23. Hinds G, Coey JMD, Lyons MEG (2001) Electrochem Commun 3:215

    Article  CAS  Google Scholar 

  24. Coey JMD, Aogaki R, Byrne F (unpublished)

  25. Bertotti G (1998) Hysteresis in magnetism. Academic Press, San Diego

  26. Rosensweig (1985) Ferrohydrodynamics. Cambridge University Press, London

    Google Scholar 

  27. Landau, Lifschitz (1984) Electrodynamics of continuous media, §35. Pergammon, Oxford

    Google Scholar 

  28. Lahoz DG, Walker G (1975) J Appl Phys 8:1994

    Google Scholar 

  29. Odenbach S, Liu M (2001) Phys Rev Lett 86:328; A Engel, ibid 4978; M Liu, ibid 4979

  30. Lange A (2002) J Magn Magn Mater 241:327

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Science Foundation Ireland.

We are grateful to Dr. James Hilton for the help in the simulation of magnetic field, to Plamen Stamenov and François Gautier for useful discussions, and to Fiona Byrne for some measurements of paramagnetic liquid confinement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. D. Coey.

Additional information

Contribution to special issue on Magnetic field effects in Electrochemistry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coey, J.M.D., Rhen, F.M.F., Dunne, P. et al. The magnetic concentration gradient force—Is it real?. J Solid State Electrochem 11, 711–717 (2007). https://doi.org/10.1007/s10008-006-0254-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0254-4

Keywords

Navigation