Skip to main content
Log in

Oscillatory electrocatalytic oxidation of methanol on an Ni(OH)2 film electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A film of Ni(OH)2 deposited cathodically on a roughened nickel substrate consists of even nanoparticles, which were characterized by atomic-force microscopy (AFM). The mechanism of potential oscillations in the electrocatalytic oxidation of methanol on this film electrode in alkaline medium was studied in situ by means of Raman spectroscopy in combination with electrochemical measurements. The redox change of the nickel hydroxide film, the concentration distribution of methanol in the diffusion layer, and the oxidation products of methanol were characterized in situ by time-resolved, spatial-resolved, and potential-dependent Raman spectroscopy, respectively. Electrochemical reactions, i.e. methanol oxidation and periodic oxygen evolution, coupling with alternately predominant diffusion and convection mass transfer of methanol, account for the potential oscillations that occur during oxidation of methanol above its limiting diffusion current. This mechanism is totally different from that of methanol oxidation on platinum electrodes, for which surface steps, i.e. formation and removal of COad, are essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mueller E (1923) Z Elektrochem 29:264

    Google Scholar 

  2. Mueller E, Hindemith G (1927) Z Elektrochem 33:562

    Google Scholar 

  3. Mueller E, Tanaka S (1928) Z Elektrochem 34:256

    Google Scholar 

  4. Horanyi G, Inzelt G, Szetey E (1977) J Electroanal Chem 81:395

    Article  CAS  Google Scholar 

  5. Hudson JL, Tsotsis TT (1994) Chem Eng Sci 49:1493

    Article  CAS  Google Scholar 

  6. Parsons R, VanderNoot T (1988) J Electroanal Chem 257:9

    Article  CAS  Google Scholar 

  7. Beden B, Léger JM, Lamy C (1992) Electrocatalytic oxidation of oxygenated aliphatic organic compounds at noble metal electrodes. In: Bockris JO’M, Conway BE, White RE (eds) Modern aspects of electrochemistry, vol 22. Plenum, New York, pp 97–264

    Google Scholar 

  8. Jarvi TD, Stuve EM (1998) Fundamental aspects of vacuum and electrocatalytic reactions of methanol and formic acid on platinum surfaces. In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley, New York, pp 75–154

    Google Scholar 

  9. Iwasita T (2002) Electrochim Acta 47:3663

    Article  CAS  Google Scholar 

  10. Wasmus S, Kuver A (1999) J Electroanal Chem 461:14

    Article  CAS  Google Scholar 

  11. Chen YX, Miki A, Ye S, Sakai H, Osawa M (2003) J Am Chem Soc 125:3680

    Article  CAS  PubMed  Google Scholar 

  12. Tian ZQ, Ren B, Wu DY (2002) J Phys Chem B 106:9463

    Article  CAS  Google Scholar 

  13. Weinberg NL, Weinberg HR (1968) Chem Rev 68:449

    CAS  Google Scholar 

  14. Kaulen J, Schäfer HJ (1982) Tetrahedron 38:3299

    Article  CAS  Google Scholar 

  15. Hui BS, Huber CO (1982) Anal Chim Acta 134:211

    Article  CAS  Google Scholar 

  16. Casella IG, Desimoni E, Cataldi TRI (1991) Anal Chim Acta 248:117

    Article  CAS  Google Scholar 

  17. Luo P, Zhang F, Baldwin RP (1991) Anal Chim Acta 244:169

    Article  CAS  Google Scholar 

  18. Casella IG, Desimoni E, Salvi AM (1991) Anal Chim Acta 243:61

    Article  CAS  Google Scholar 

  19. Marioli JM, Luo PF, Kuwana T (1993) Anal Chim Acta 282:571

    Google Scholar 

  20. Marioli JM, Kuwana T (1993) Electroanalysis 5:11

    CAS  Google Scholar 

  21. Fleischmann M, Korinek K, Pletcher D (1971) J Electroanal Chem 31:39

    Article  CAS  Google Scholar 

  22. Fleischmann M, Korinek K, Pletcher D (1972) J Chem Soc Perkin Trans II 10:1396

    Article  Google Scholar 

  23. Robertson PM (1980) J Electroanal Chem 111:97

    Article  CAS  Google Scholar 

  24. Berchmans S, Gomathi H, Rao GP (1995) J Electroanal Chem 394:267

    Article  CAS  Google Scholar 

  25. Kowal A, Port SN, Nichols RJ (1997) Catalysis Today 38:483

    Article  CAS  Google Scholar 

  26. Maximovitch S, Bronoel G (1981) Electrochim Acta 26:1331

    Article  CAS  Google Scholar 

  27. Archer MD, Corke CC, Harji BH (1987) Electrochim Acta 32:13

    Article  CAS  Google Scholar 

  28. Amjad M, Pletcher D, Smith C (1977) J Electrochem Soc 124:203

    CAS  Google Scholar 

  29. Taraszewska J, Roslonek G (1994) J Electroanal Chem 364:209

    Article  CAS  Google Scholar 

  30. Chen YL, Chou TC (1996) Ind Eng Chem Res 35:2172

    Article  CAS  Google Scholar 

  31. El-Shafei AA (1999) J Electroanal Chem 471:89

    Article  CAS  Google Scholar 

  32. Jafarian M, Mahjani MG, Heli H, Gobal F, Heydarpoor M (2003) Electrochem Commun 5:184

    Article  CAS  Google Scholar 

  33. Vértes G, Horányi G (1974) J Electroanal Chem 52:47

    Article  Google Scholar 

  34. Cizewski A (1995) Electroanalysis 7:1132

    Google Scholar 

  35. Rostonek G, Taraszewska J (1992) J Electroanal Chem 325:285

    Article  Google Scholar 

  36. Huang W, Li ZL, Peng YD, Niu ZJ (2004) Chem Commun 12:1380

    Article  Google Scholar 

  37. Li ZL, Ren B, Xiao XM, Zeng Y, Chu X and Tian ZQ (2002) J Phys Chem A 106:6570

    Article  CAS  Google Scholar 

  38. Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier, Amsterdam.

    Google Scholar 

  39. Li ZL, Yu Y, Liao H, Yao SZ (2000) Chem Lett 4:330

    Article  Google Scholar 

  40. Li ZL, Ren B, Niu ZJ, Xiao XM, Zeng Y, Tian ZQ (2002) Chin J Chem 20:657

    CAS  Google Scholar 

  41. Krischer K, Varela H (2003) Oscillations and other dynamic instabilities. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells: fundamentals, technology and applications, vol. 2. Wiley, Chichester, pp 679–701

    Google Scholar 

  42. Lo YL, Hwang BJ (1998) Langmuir 14:944

    Article  CAS  Google Scholar 

  43. Weston RE, Jr Ehrenson S, Heinzinger K (1967) J Am Chem Soc 89:481

    CAS  Google Scholar 

  44. Ito K, Bernstein HJ (1956) Can J Chem 34:170

    CAS  Google Scholar 

  45. Chang SC, Ho Y, Weaver MJ (1991) J Am Chem Soc 113:9506

    CAS  Google Scholar 

  46. Bisby RH, Johnson SA, Parker AW, Tavender SM (1998) J Chem Soc Faraday Trans 94(15):2069

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Natural Science Foundation of Zhejiang Province of China (202129), and from National Natural Science Foundation of China (20073012), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. L. Li.

Additional information

This work is dedicated to Professor Gyorgy Horanyi on the occasion of his 70th birthday in recognition of his numerous contributions to field of electrochemical oscillations and electrocatalysis at Ni-hydroxide electrodes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Li, Z.L., Peng, Y.D. et al. Oscillatory electrocatalytic oxidation of methanol on an Ni(OH)2 film electrode. J Solid State Electrochem 9, 284–289 (2005). https://doi.org/10.1007/s10008-004-0599-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-004-0599-5

Keywords

Navigation