Skip to main content
Log in

Effect of solvents on intra- and inter-molecular interactions of oligothiophenes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Oligothiophenes have long been used as model compounds to understand the chemistry of polythiophenes. Herein, we have some quantum chemical calculations and intra- and inter-molecular interaction calculations of a series of oligothiophenes such as terthiophene, quintetthiophene, sevensthiophene, terthiophene-terthiophene, terthiophene-water, terthiophene-methanol, and terthiophene-chloroform performed by time-dependent density functional theory (TD-DFT), density functional theory (DFT), and Multiwfn: a multifunctional wavefunction analyzer. The UV-vis spectra, HOMO-LUMO energies, NBO analysis, MEP, molecular structures, and electronic properties were computed using DFT/TD-DFT at the level of B3LYP/6-31+ G (d,p) and described. The nature of molecular interactions between terthiophene and solvents like water, methanol, and chloroform were also investigated using non-covalent interaction index (NCI), reduced density gradient (RDG), localized orbital locator (LOL), and electron localization function (ELF) topological analyses. Besides, Fukui functions and energy of population density-of-states were computed using the same method. The calculation results show that there are some changes in the terthiophene with the addition of solvent to the medium.

Methods

DFT calculations were performed using the Gaussian 09 software and GaussView 5.0 visulation program. Multiwfn software is used to calculate the reduced density gradient (RDG) scatterplots, non-covalent interactions (NCI), ELF, LOL, Fukui analysis, and energy of population density-of-states of oligothiophenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Le TH, Kim Y, Yoo H (2017) Electrical and electrochemical properties of conducting polymers. Polymers 9(4):150

    PubMed  PubMed Central  Google Scholar 

  2. Oberhaus FV, Frense D (2021) Fast, simple, and gentle method for removal of polythiophene and other conductive polymer films from gold electrodes. J Electroanal Chem 895:115466

    CAS  Google Scholar 

  3. Shi Y, Peng L, Ding Y, Zhao Y, Yu G (2015) Nanostructured conductive polymers for advanced energy storage. Chem Soc Rev 44(19):6684–6696

    CAS  PubMed  Google Scholar 

  4. Zamani P, Higgins D, Hassan F, Jiang G, Wu J, Abureden S, Chen Z (2014) Electrospun iron–polyaniline–polyacrylonitrile derived nanofibers as non–precious oxygen reduction reaction catalysts for PEM fuel cells. Electrochim Acta 139:111–116

    CAS  Google Scholar 

  5. Matysiak W, Tański T, Smok W, Gołombek K, Schab-Balcerzak E (2020) Effect of conductive polymers on the optical properties of electrospun polyacrylonitryle nanofibers filled by polypyrrole, polythiophene, and polyaniline. Appl Surf Sci 509:145068

    CAS  Google Scholar 

  6. Moon JM, Thapliyal N, Hussain KK, Goyal RN, Shim YB (2018) Conducting polymer-based electrochemical biosensors for neurotransmitters: a review. Biosens Bioelectron 102:540–552

    CAS  PubMed  Google Scholar 

  7. Granström M, Harrison MG, Friend RH (1998) Electro-optical polythiophene devices. Handbook of Oligo-and Polythiophenes, pp 405–458

    Google Scholar 

  8. Liu YC, Huang JM, Tsai CE, Chuang TC, Wang CC (2004) Effect of TiO2 nanoparticles on the electropolymerization of polypyrrole. Chem Phys Lett 387(1-3):155–159

    CAS  Google Scholar 

  9. Mehmood U, Al-Ahmed A, Hussein IA (2016) Review on recent advances in polythiophene based photovoltaic devices. Renew Sust Energ Rev 57:550–561

    CAS  Google Scholar 

  10. Bouman MM, Havinga EE, Janssen RAJ, Meijer EW (1994) Chiroptical properties of regioregular chiral polythiophenes. Molecular Crystals and Liquid Crystals Science and Technology. Section A Mol Cryst Liq Cryst 256(1):439–448

    CAS  Google Scholar 

  11. Langeveld-Voss BMW, Christiaans MPT, Janssen RAJ, Meijer EW (1998) Inversion of optical activity of chiral polythiophene aggregates by a change of solvent. Macromolecules 31(19):6702–6704

    CAS  Google Scholar 

  12. Sakakibara K, Rosenau T (2012) Polythiophene-cellulose composites: synthesis, optical properties and homogeneous oxidative co-polymerization. Walter de Gruyter

    Google Scholar 

  13. Knaapila M, Costa T, Garamus VM, Kraft M, Drechsler M, Scherf U, Burrows HD (2014) Conjugated polyelectrolyte (CPE) poly {3-[6-(N-methylimidazolium) hexyl]-2, 5-thiophene} complexed with DNA: relation between colloidal level solution structure and chromic effects. Macromolecules 47(12):4017–4027

    CAS  Google Scholar 

  14. Knaapila M, Evans RC, Gutacker A, Garamus VM, Székely NK, Scherf U, Burrows HD (2011) Conjugated polyelectrolyte (CPE) poly [3-[6-(N-methylimidazolium) hexyl]-2, 5-thiophene] complexed with aqueous sodium dodecylsulfate amphiphile: synthesis, solution structure and “surfactochromic” properties. Soft Matter 7(15):6863–6872

    CAS  Google Scholar 

  15. Urbánek P, Di Martino A, Gladyš S, Kuřitka I, Minařík A, Pavlova E, Bondarev D (2015) Polythiophene-based conjugated polyelectrolyte: optical properties and association behavior in solution. Synth Met 202:16–24

    Google Scholar 

  16. Yang Y, Yang L, Ma F, Li Y, Qiu Y (2023) Theoretical investigation on the fluorescent sensing mechanism for recognizing formaldehyde: TDDFT calculation and excited-state nonadiabatic dynamics. Chinese Physics B 32(5):057801

    Google Scholar 

  17. Bayindir S, Yigit E, Akman F, Sevgili Ö, Orak İ, Dayan O (2023) The electrical and photophysical performances of axially-substituted naphthalene diimide-based small molecules as interface layer. Mater Sci Eng B 294:116510

    CAS  Google Scholar 

  18. Yang L, Zhang D, Wang M, Yang Y (2023) Effects of solvent polarity on the novel excited-state intramolecular thiol proton transfer and photophysical property compared with the oxygen proton transfer. Spectrochim Acta A Mol Biomol Spectrosc 293:122475

    CAS  PubMed  Google Scholar 

  19. Yang Y, Ding Y, Shi W, Ma F, Li Y (2020) The effects of amino group meta-and para-substitution on ESIPT mechanisms of amino 2-(2’-hydroxyphenyl) benzazole derivatives. J Lumin 218:116836

    CAS  Google Scholar 

  20. Yang Y, Shi W, Chen Y, Ma F, Li Y (2021) The direct evidence for ESPT route and ICT emission of N6-Methyladenine in aqueous solution. J Lumin 229:117698

    CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian, Inc., Wallingford CT, 2010

  22. Dennington R, Keith T, Millam J (2010) GaussView, Version 5. Semichem Inc., Shawnee Mission KS

    Google Scholar 

  23. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098

    CAS  Google Scholar 

  24. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785

    CAS  Google Scholar 

  25. Runge E, Gross EK (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52(12):997

    CAS  Google Scholar 

  26. Klamt A, Moya C, Palomar J (2015) A comprehensive comparison of the IEFPCM and SS (V) PE continuum solvation methods with the COSMO approach. J Chem Theory Comput 11(9):4220–4225

    CAS  PubMed  Google Scholar 

  27. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    PubMed  Google Scholar 

  28. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    CAS  PubMed  Google Scholar 

  29. Akman F (2021) A comparative study based on molecular structure, spectroscopic, electronic, thermodynamic and NBO analysis of some nitrogen-containing monomers. Polym Bull 78(2):663–693

    CAS  Google Scholar 

  30. Fleming I (1976) Frontier orbital and organic chemical reactions. John Wiley and Sons, New York

    Google Scholar 

  31. Bouzzine SM, Hamidi M, Bouachrine M, Serien-Spirau F, Lère Porte JP, Sotiropoulos JM, Iraqi A (2012) Theoretical investigations on the electronic and optical properties of bridged oligothiophenes. Chem A Eur J 116(39):9730–9738

    CAS  Google Scholar 

  32. Zaier R, Hajaji S, Kozaki M, Ayachi S (2019) DFT and TD-DFT studies on the electronic and optical properties of linear π-conjugated cyclopentadithiophene (CPDT) dimer for efficient blue OLED. Opt Mater 91:108–114

    CAS  Google Scholar 

  33. Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102(24):7211–7218

    CAS  Google Scholar 

  34. Szafran M, Komasa A, Bartoszak-Adamska E (2007) Crystal and molecular structure of 4-carboxypiperidinium chloride (4-piperidinecarboxylic acid hydrochloride). J Mol Struct 827(1-3):101–107

    CAS  Google Scholar 

  35. James C, Raj AA, Reghunathan R, Jayakumar VS, Joe IH (2006) Structural conformation and vibrational spectroscopic studies of 2, 6-bis (p-N, N-dimethyl benzylidene) cyclohexanone using density functional theory. J Raman Spectr 37(12):1381–1392

    CAS  Google Scholar 

  36. Klempová S, Oravec M, Vizárová K (2023) Analysis of thermally and UV–Vis aged plasticized PVC using UV–Vis, ATR-FTIR and Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 294:122541

    PubMed  Google Scholar 

  37. Ghazy AR, Hemeda OM, Al-Hossainy AF, Ghazy R, Henaish AMA (2023) Docking of COVID-19 main protease and TD-DFT/DMOl3 simulated method, synthesis, and characterization with hybrid nanocomposite thin films and its applications. Surfaces and Interfaces 37:102722

    CAS  Google Scholar 

  38. Gogoi P, Mohan U, Borpuzari MP, Boruah A, Baruah SK (2019) UV-Visible spectroscopy and density functional study of solvent effect on halogen bonded charge-transfer complex of 2-Chloropyridine and iodine monochloride. Arab J Chem 12(8):4522–4532

    CAS  Google Scholar 

  39. Scrocco E, Tomasi J (1973) The electrostatic molecular potential as a tool for the interpretation of molecular properties. In New concepts II, Springer Berlin Heidelberg. Curr Chem 42:95–170

    CAS  Google Scholar 

  40. Luque FJ, López JM, Orozco M (2000) Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects”. Theor Chem Accounts 103(3-4):343–345

    CAS  Google Scholar 

  41. Agarwal P, Bee S, Gupta A, Tandon P, Rastogi VK, Mishra S, Rawat P (2014) Quantum chemical study on influence of intermolecular hydrogen bonding on the geometry, the atomic charges and the vibrational dynamics of 2,6-dichlorobenzonitrile. Spectrochim. Acta A Mol Biomol Spectrosc 121:464–482

    CAS  PubMed  Google Scholar 

  42. Contreras-García J, Boto RA, Izquierdo-Ruiz F, Reva I, Woller T, Alonso M (2016) A benchmark for the non-covalent interaction (NCI) index or… is it really all in the geometry? Theor Chem Accounts 135:1–14

    Google Scholar 

  43. Li P, Wei J, Wei H, Wang K, Wu J, Li Y, Ma J (2022) A systemic insight into exohedral actinides and endohedral borospherenes: An&Bm and An@ Bn (An= U, Np, Pu; m= 28, 32, 34, 36, 38, 40; n= 36, 38, 40). Molecules 27(18):6047

    CAS  PubMed  PubMed Central  Google Scholar 

  44. March NH (1982) Electron density theory of atoms and molecules. J Phys Chem 86(12):2262–2267

    CAS  Google Scholar 

  45. Fukui K (1982) Role of frontier orbitals in chemical reactions. Science. 218(4574):747–754

    CAS  PubMed  Google Scholar 

  46. Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371(6499):683–686

    CAS  Google Scholar 

  47. Prasana JC, Muthu S, Abraham CS (2019) Molecular docking studies, charge transfer excitation and wave function analyses (ESP, ELF, LOL) on valacyclovir: a potential antiviral drug. Comput Biol Chem 78:9–17

    PubMed  Google Scholar 

  48. Rizwana BF, Prasana JC, Abraham CS, Muthu S (2018) Spectroscopic investigation, hirshfeld surface analysis and molecular docking studies on anti-viral drug entecavir. J Mol Struct 1164:447–458

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Bitlis Eren University for Gaussian software and Bingöl University for the server.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feride Akman.

Ethics declarations

Conflict of interest

The author declares no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akman, F. Effect of solvents on intra- and inter-molecular interactions of oligothiophenes. J Mol Model 29, 276 (2023). https://doi.org/10.1007/s00894-023-05684-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05684-4

Keywords

Navigation