Skip to main content
Log in

Structural and electronic properties of doped oligothiophenes in the presence of p-toluenesulfonate acids

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We investigate the geometric and electronic structure of singly oxidized oligothiophenes in the presence of the counterion named p-toluenesulfonate acid (p-TSA) by performing ab initio density functional theory calculations using Becke-Half-and-Half-Lee-Yang-and-Parr hybrid functional on chains of up to 12 thiophene rings. Different possibilities of positioning the counterion along the conjugated chain are studied. The calculations indicate that the side orientation is the most stable structure of pTh/p-TSA complex. Further, the influence of the counterion on the charge distribution and structural geometry of charged oligothiophenes is also investigated. In the last part of the work, the solid-state packing effects are considered by studying the stacking of two conjugated chains in the presence of two counterions. Our results are consistent with several experimental observations on similar conjugated polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DDC, Dos Santos DA, Brédas JL, Lögdlund M, Salaneck WR (1999) Nature 397:121–128

    Article  CAS  Google Scholar 

  2. Fichou D (ed) (1999) Handbook of oligo- and polythiophenes. Wiley-VCH, Weinheim

    Google Scholar 

  3. Cornil J, Beljonne D, Brédas JL (1995) J Chem Phys 103:842–849

    Article  CAS  Google Scholar 

  4. Dkhissi A, Louwet F, Groenendaal L, Beljonne D, Lazzaroni R, Brédas JL (2002) Chem Phys Lett 359:466–472

    Article  CAS  Google Scholar 

  5. Salzner U (2007) J Chem Theory Comput 3:1143–1157

    Article  CAS  Google Scholar 

  6. Stafström S, Brédas JL (1988) Phys Rev B 38:4180–4191

    Article  Google Scholar 

  7. Moro G, Scalmani G, Cosentino U, Pitea D (2000) Synth Met 108:165–172

    Article  CAS  Google Scholar 

  8. Brocks G (1999) Synth Met 102:914–915

    Article  CAS  Google Scholar 

  9. Dkhissi A, Beljonne D, Lazzaroni R, Louwet F, Groenendaal L, Brédas JL (2003) Int J Quantum Chem 91:517–523

    Article  CAS  Google Scholar 

  10. Vogl P, Campbell DK (1989) Phys Rev Lett 62:2012–2015

    Article  CAS  Google Scholar 

  11. Vogl P, Campbell DK (1990) Phys Rev B 41:12797–12817

    Article  CAS  Google Scholar 

  12. Geskin VM, Dkhissi A, Brédas JL (2003) Int J Quantum Chem 91:350–354

    Article  CAS  Google Scholar 

  13. Meisel KD, Vocks H, Bobbert PA (2005) Phys Rev B 71:205206

    Article  Google Scholar 

  14. Lin X, Li J, Yip S (2005) Phys Rev Lett 95:198303

    Article  Google Scholar 

  15. Aleman C, Curco D, Casanovas J (2004) Chem Phys Lett 386:408–413

    Article  CAS  Google Scholar 

  16. Aleman C (1997) Macromol Theory Simul 6:237–245

    Article  Google Scholar 

  17. Ehrendorfer Ch, Karpfen A (1994) J Phys Chem 98:7492–7496

    Article  CAS  Google Scholar 

  18. Brédas JL, Themans JG, Fripiat JG, Andre JM, Chance RR (1984) Phys Rev B 29:6761–6773

    Article  Google Scholar 

  19. Irle S, Lischka H (1995) J Chem Phys 103:1508–1522

    Article  CAS  Google Scholar 

  20. Ullah H, Shah AA, Bilal S, Ayub K (2014) J Phys Chem C 118(31):17819–17830

    Article  CAS  Google Scholar 

  21. Kaloni TP, Schreckenbach G, Freund MS (2015) J Phys Chem C 119:3979–3989

    Article  CAS  Google Scholar 

  22. Dkhissi A, Beljonne D, Lazzaroni R, Louwet F, Groenendaal B (2008) Theor Chem Acc 119:305–312

    Article  CAS  Google Scholar 

  23. Geskin VM, Brédas JL (2003) Chem Phys Chem 4:498–505

    CAS  Google Scholar 

  24. Geskin VM, Grozema FC, Siebbeles LDA, Beljonne D, Brédas JL, Cornil J (2005) J Phys Chem B 109:20237–20243

    Article  CAS  Google Scholar 

  25. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  26. Zade SS, Bendikov M (2007) Chem Eur J 13:3688–3700

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03 Revision D02. Gaussian Inc, Wallingford CT

    Google Scholar 

  28. Singh-Miller NE, Scherlis DA, Marzari N (2006) J Phys Chem B 110:24822–24826

    Article  CAS  Google Scholar 

  29. Marumoto K, Takeuchi N, Kuroda S (2003) Chem Phys Lett 382:541–546

    Article  CAS  Google Scholar 

  30. Aasmundtveit KE, Samuelsen EJ, Pettersson LAA, Inganas O, Johansson T, Feidenhans R (1999) Synth Met 101:561–564

    Article  CAS  Google Scholar 

  31. Niu L, Kvarnstrom C, Froberg K, Ivaska A (2001) Synth Met 122:425–429

    Article  CAS  Google Scholar 

  32. Salzner U (2007) J Chem Theory Comput 3:219–231

    Article  CAS  Google Scholar 

  33. Miller LL, Mann KR (1996) Acc Chem Res 29:417–423

    Article  CAS  Google Scholar 

  34. Scherlis DA, Marzari N (2004) J Phys Chem B 108:17791–17795

    Article  CAS  Google Scholar 

  35. Brocks G (2000) J Chem Phys 112:5353–5363

    Article  CAS  Google Scholar 

  36. Brocks G (2001) Synth Met 119:253–254

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amar Chaalane or Ahmed Dkhissi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaalane, A., Mahi, D. & Dkhissi, A. Structural and electronic properties of doped oligothiophenes in the presence of p-toluenesulfonate acids. Theor Chem Acc 134, 66 (2015). https://doi.org/10.1007/s00214-015-1663-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1663-1

Keywords

Navigation