Skip to main content
Log in

Intermolecular interactions between the heavy alkenes H2Si = TH2 (T = C, Si, Ge, Sn, Pb) and acetylene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The intermolecular interactions between the heavy alkenes H2Si = TH2 (T = C, Si, Ge, Sn, Pb) and C2H2 have been calculated at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVDZ level, and the nature of these complexes has been investigated by natural bond orbital. The four types (type-A, type-B, type-C and type-D) of complexes can be located for H2Si = TH2···C2H2 system. The complexes involving H2Si = TH2···C2F2 and H2Si = TH2···C2(CN)2 have also been examined to explore the substituent effects. Some complexes which are stable for H2Si = TH2···C2H2 system become unstable for H2Si = TH2···C2F2 or H2Si = TH2···C2(CN)2 system, while other complexes which are unstable for H2Si = TH2···C2H2 system become stable for H2Si = TH2···C2F2 or H2Si = TH2···C2(CN)2 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Wheeler SE, Seguin TJ, Guan Y, Doney AC (2016) Noncovalent interactions in organocatalysis and the prospect of computational catalyst design. Acc. Chem. Res 49:1061–1069

    Article  CAS  PubMed  Google Scholar 

  2. Vallavoju N, Sivaguru J (2014) Supramolecular photocatalysis: combining confinement and non-covalent interactions to control light initiated reactions. Chem. Soc. Rev 43:4084–4101

    Article  CAS  PubMed  Google Scholar 

  3. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev 116:5464–5519

    Article  CAS  PubMed  Google Scholar 

  4. Scheiner S (1997) Hydrogen bonding. a theoretical perspective. Oxford University Press, New York

    Google Scholar 

  5. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) An overview of halogen bonding. J. Mol. Model 13:305–311

    Article  CAS  PubMed  Google Scholar 

  6. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys. Chem. Chem. Phys 12:7748–7757

    Article  CAS  PubMed  Google Scholar 

  7. Sarwar MG, Dragisic B, Sagoo S, Taylor MS (2010) A tridentate halogen-bonding receptor for tight binding of halide anions. Angew. Chem. Int. Ed 49:1674–1677

    Article  CAS  Google Scholar 

  8. Hernandes MZ, Cavalcanti SMT, Moreira DRM, de Azevedo Jr WF, Leite ACL (2010) Halogen atoms in the modern medicinal chemistry: hints for the drug design. Curr. Drug Targets 11:303–314

    Article  CAS  PubMed  Google Scholar 

  9. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Halogen bonding in supramolecular chemistry. Angew. Chem. Int. Ed 47:6114–6127

    Article  CAS  Google Scholar 

  10. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the sigma-hole. Proceedings of “Modeling interactions in biomolecules II”, Prague, September 5th–9th, 2005. J. Mol. Model 13:291–296

    Article  CAS  PubMed  Google Scholar 

  11. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) σ-Holes, π-holes and electrostatically-driven interactions. J. Mol. Model 18:541–548

    Article  CAS  PubMed  Google Scholar 

  12. Bauzá A, Mooibroek TJ, Frontera A (2013) Tetrel-bonding interaction: rediscovered supramolecular force? Angew. Chem. Int. Ed 52:12317–12321

    Article  Google Scholar 

  13. Chehayber JM, Nagy ST, Lin CS (1984) Abinitio studies of complexes between SiF4 and ammonia. Can. J. Chem 62:27–31

    Article  CAS  Google Scholar 

  14. Bundhun A, Ramasami P, Murray JS, Politzer P (2013) Trends in σ-hole strengths and interactions of F3MX molecules (M = C, Si, Ge and X = F, Cl, Br, I). J. Mol. Model 19:2739–2746

    Article  CAS  PubMed  Google Scholar 

  15. Grabowski SJ (2014) Tetrel bond-σ-hole bond as a preliminary stage of the SN2 reaction. Phys. Chem. Chem. Phys 16:1824–1834

    Article  CAS  PubMed  Google Scholar 

  16. Grabowski SJ (2018) Tetrel bonds with π-electrons acting as Lewis bases—theoretical results and experimental evidences. Molecules 23:1183

    Article  PubMed Central  Google Scholar 

  17. Thomas SP, Pavan MS, Row TNG (2014) Experimental evidence for ‘carbon bonding’ in the solid state from charge density analysis. Chem. Commun 50:49–51

    Article  CAS  Google Scholar 

  18. McDowell SAC, Joseph JA (2014) The effect of atomic ions on model σ-hole bonded complexes of AH3Y (A = C, Si, Ge; Y = F, Cl, Br). Phys. Chem. Chem. Phys 16:10854–10860

    Article  CAS  PubMed  Google Scholar 

  19. Mani D, Arunan E (2014) The X-C···π (X = F, Cl, Br, CN) carbon bond. J. Phys. Chem. A 118:10081–10089

    Article  CAS  PubMed  Google Scholar 

  20. Southern SA, Bryce DL (2015) NMR investigations of noncovalent carbon Tetrel bonds. Computational assessment and initial experimental observation. J. Phys. Chem. A 119:11891–11899

    Article  CAS  PubMed  Google Scholar 

  21. Scheiner S (2015) Comparison of CH···O, SH···O, Chalcogen, and Tetrel bonds formed by neutral and cationic sulfur-containing compounds. J. Phys. Chem. A 119:9189–9199

    Article  CAS  PubMed  Google Scholar 

  22. Azofra LM, Scheiner S (2015) Tetrel, chalcogen, and CH···O hydrogen bonds in complexes pairing carbonyl-containing molecules with 1, 2, and 3 molecules of CO2. J. Chem. Phys 142:034307

    Article  PubMed  Google Scholar 

  23. Bauzá A, Mooibroek TJ, Frontera A (2016) Tetrel bonding interactions. Chem. Rec 16:473–487

    Article  PubMed  Google Scholar 

  24. Bauzá A, Frontera A, Mooibroek TJ (2016) 1,1,2,2-Tetracyanocyclopropane (TCCP) as supramolecular synthon. Phys. Chem. Chem. Phys 18:1693–1698

    Article  PubMed  Google Scholar 

  25. Liu MX, Li QZ, Li WZ, Cheng JB (2017) Carbene tetrel-bonded complexes. Struct. Chem 28:823–831

    Article  CAS  Google Scholar 

  26. Liu MX, Li QZ, Cheng JB, Li WZ, Li HB (2016) Tetrel bond of pseudohalide anions with XH3F (X = C, Si, Ge, and Sn) and its role in SN2 reaction. J. Chem. Phys 145:224310

    Article  PubMed  Google Scholar 

  27. Bene JED, Alkorta I, Elguero J (2017) Carbon-carbon bonding between nitrogen heterocyclic Carbenes and CO2. J. Phys. Chem. A 121:8136–8146

    Article  PubMed  Google Scholar 

  28. Liu MX, Li QZ, Scheiner S (2017) Comparison of tetrel bonds in neutral and protonated complexes of pyridineTF3 and furanTF3 (T = C, Si, and Ge) with NH3. Phys. Chem. Chem. Phys 19:5550–5559

    Article  CAS  PubMed  Google Scholar 

  29. Legon AC (2017) Tetrel, pnictogen and chalcogen bonds identified in the gas phase before they had names: a systematic look at non-covalent interactions. Phys. Chem. Chem. Phys 19:14884–14896

    Article  CAS  PubMed  Google Scholar 

  30. Scheiner S (2018) Comparison of various means of evaluating molecular electrostatic potentials for noncovalent interactions. J. Comput. Chem 39:500–510

    Article  CAS  PubMed  Google Scholar 

  31. Zierkiewicz W, Michalczyk M, Scheiner S (2018) Implications of monomer deformation for tetrel and pnicogen bonds. Phys. Chem. Chem. Phys 20:8832–8841

    Article  CAS  PubMed  Google Scholar 

  32. Liu MX, Yang L, Li QZ, Li WZ, Cheng JB, Xiao B, Yu XF (2016) Modulating the strength of tetrel bonding through beryllium bonding. J. Mol. Model 22:192

    Article  CAS  PubMed  Google Scholar 

  33. McDowell SAC (2014) Sigma-hole cooperativity in anionic [FX···CH3···YF] (X, Y = Cl, Br) complexes. Chem. Phys. Lett 598:1–4

    Article  CAS  Google Scholar 

  34. Esrafili MD, Mohammadirad N, Solimannejad M (2015) Tetrel bond cooperativity in open-chain (CH3CN)n and (CH3NC)n clusters (n = 2–7): an ab initio study. Chem. Phys. Lett 628:16–20

    Article  CAS  Google Scholar 

  35. Solimannejad M, Orojloo M, Amani S (2015) Effect of cooperativity in lithium bonding on the strength of halogen bonding and tetrel bonding: (LiCN)n···ClYF3 and (LiCN)n···YF3Cl (Y = C, Si and n = 1-5) complexes as a working model. J. Mol. Model 21:183

    Article  PubMed  Google Scholar 

  36. Yourdkhani S, Korona T, Hadipour NL (2015) Interplay between tetrel and triel bonds in RC6H4CN···MF3CN···BX3 complexes: a combined symmetry-adapted perturbation theory, Møller-Plesset, and quantum theory of atoms-in-molecules study. J. Comput Chem. 36:2412–2428

    Article  CAS  PubMed  Google Scholar 

  37. Marín-Luna M, Alkorta I, Elguero J (2016) Cooperativity in Tetrel bonds. J. Phys. Chem. A 120:648–656

    Article  PubMed  Google Scholar 

  38. Esrafili MD, Mohammadian-Sabet F (2016) Cooperativity of tetrel bonds tuned by substituent effects. Mol. Phys 114:1528–1538

    Article  CAS  Google Scholar 

  39. Rezaei Z, Solimannejad M, Esrafili MD (2015) Interplay between hydrogen bond and single-electron tetrel bond: H3C···COX2···HY and H3C···CSX2···HY (X = F, cl; Y = CN, NC) complexes as a working model. Comput. Theor. Chem 1074:101–106

    Article  CAS  Google Scholar 

  40. Xu HL, Cheng JB, Yang X, Liu ZB, Xiao B, Li QZ (2017) Interplay between the σ-tetrel bond and σ-halogen bond in PhSiF3···4-iodopyridine···N-base. RSC Adv. 7:21713–21720

    Article  CAS  Google Scholar 

  41. Li W, Zeng Y, Li X, Sun Z, Meng L (2016) Insight into the pseudo π-hole interactions in the M3H6(NCF)n (M = C, Si, Ge, Sn, Pb; n = 1, 2, 3) complexes. Phys. Chem. Chem. Phys 18:24672–24680

    Article  CAS  PubMed  Google Scholar 

  42. Chen YS, Yao LF, Wang F (2019) Synergistic and antagonistic interplay between tetrel bond and pnicogen bond in complexes involving ring compounds. J. Mol. Model 25:351

    Article  PubMed  Google Scholar 

  43. Quiñonero D (2017) Sigma-hole carbon-bonding interactions in carbon–carbon double bonds: an unnoticed contact. Phys. Chem. Chem. Phys 19:15530–15540

    Article  PubMed  Google Scholar 

  44. Remyaa K, Suresh CH (2015) Intermolecular carbon–carbon, nitrogen–nitrogen and oxygen–oxygen non-covalent bonding in dipolar molecules. Phys. Chem. Chem. Phys 17:18380–18392

    Article  Google Scholar 

  45. Varadwaj PR, Varadwaja A, Jin BY (2014) Significant evidence of C···O and C···C long-range contacts in several heterodimeric complexes of CO with CH3–X, should one refer to them as carbon and dicarbon bonds! Phys. Chem. Chem. Phys 16:17238–17252

    Article  CAS  PubMed  Google Scholar 

  46. Alkorta I, Rozas I, Elguero J (2001) Molecular complexes between silicon derivatives and electron-rich groups. J. Phys. Chem. A 105:743–749

    Article  CAS  Google Scholar 

  47. Scheiner S (2020) The ditetrel bond noncovalent bond between neutral tetrel atoms. Phys. Chem. Chem. Phys 22:16606–16614

    Article  CAS  PubMed  Google Scholar 

  48. Sethio D, Oliveira V, Kraka E (2018) Quantitative assessment of tetrel bonding utilizing vibrational spectroscopy. Molecules 23:2763

    Article  PubMed Central  Google Scholar 

  49. Wei YX, Li QZ, Scheiner S (2018) The π-tetrel bond and its influence on hydrogen bonding and proton transfer. ChemPhysChem 19:736–743

    Article  CAS  PubMed  Google Scholar 

  50. Li QZ, Guo X, Yang X, Li WZ, Cheng JB, Li HB (2014) A σ-hole interaction with radical species as electron donors: does single-electron tetrel bonding exist? Phys. Chem. Chem. Phys 16:11617–11625

    Article  CAS  PubMed  Google Scholar 

  51. Zierkiewicz W, Michalczyk M, Scheiner S (2018) Comparison between Tetrel bonded complexes stabilized by σ and π hole interactions. Molecules 23:1416

    Article  PubMed Central  Google Scholar 

  52. Chen Y, Wang F (2020) Intermolecular interactions involving heavy alkenes H2Si=TH2 (T = C, Si, Ge, Sn, Pb) with H2O and HCl: tetrel bond and hydrogen bond. ACS Omega 5:30210–30225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams FD, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2013) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT

    Google Scholar 

  54. Feller D (1996) The role of databases in support of computational chemistry calculations. J. Comput. Chem 17:1571–1586

    Article  CAS  Google Scholar 

  55. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys 19:553–566

    Article  CAS  Google Scholar 

  56. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem 33:580–592

    Article  PubMed  Google Scholar 

  57. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev 88:899–926

    Article  CAS  Google Scholar 

Download references

Code availability

N/A.

Funding

This work was supported by the Scientific Research Funds from the Educational Department of Yunnan Province, China, grant nos. 2015Y434 and 2020J0634.

Author information

Authors and Affiliations

Authors

Contributions

Yishan Chen: Investigation, Conceptualization, Writing–original draft. Lifeng Yao: Writing–review and editing. Fan Wang: Resources, Supervision.

Corresponding author

Correspondence to Yishan Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yao, L. & Wang, F. Intermolecular interactions between the heavy alkenes H2Si = TH2 (T = C, Si, Ge, Sn, Pb) and acetylene. J Mol Model 27, 110 (2021). https://doi.org/10.1007/s00894-021-04738-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04738-9

Keywords

Navigation