Skip to main content
Log in

Investigation of electronic, magnetic, elastic, mechanical, thermodynamic, and thermoelectronic properties of Mn2PtV Heusler alloy: ab initio study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this paper, we report electronic, magnetic, mechanical thermodynamic, and thermoelectric properties of Mn2PtV using density functional theory. Generalized gradient approximation (GGA) and GGA + U, where U is Hubbard correlation, have been set forth to examine the material for various properties. The material was found to have cubic Fm-3m (225) as the stable ground state. The investigated electronic results within GGA and GGA + U both present metallic nature for the compound. The calculated magnetic moment of 4.87 μB was found for the compound. From mechanical investigation, the material was found to be highly elastic anisotropic, hard, and ductile. The thermodynamic parameters like bulk modulus (B), specific heat at constant volume (Cv), Grüneisen parameter (γ), and Debye temperature (θD) have been predicted with temperature and pressure variation, using quasi-harmonic Debye model. From thermoelectric investigation, the calculated value of Seebeck coefficient was found negative in the entire temperature for both spins, suggesting electrons as charge carriers. The total electronic thermal conductivity was found to have increasing nature with temperature. Power factor (PF), which decides the thermoelectric potential of a material, was found to have a pleasant value under high temperature. The calculated value of PF was found to be 0.75 × 1012 WK−2 m−1 s−1 at 1000 K; hence, the material can find its possible application in waste heat management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Heusler F (1903). Verh. d. DPG 5:219

  2. Kumar V, Reehuis M, Hoser A, Adler P, Felser C (2018). J Phys Condens Matter 30:265803

    Article  PubMed  Google Scholar 

  3. Heusler F, Starck W, Haupt E (1903). Verh. d. DPG 5:220

  4. Graf T, Casper F, Winterlik J, Balke B, Fecher GH, Felser C (2009). Z Anorg Allg Chem 635:976

    Article  CAS  Google Scholar 

  5. Bradley AJ, Rodgers JW (1934). Proc. Roy. Soc. (London) A 144:340

  6. Heusler O (1934). Ann Phys 411:155

    Article  Google Scholar 

  7. Duan J, Yin-Wei W, A-Peng Z, Liu S, Dar SA (2019). Solid State Commun 290:12–21

    Article  CAS  Google Scholar 

  8. Dar SA, Sharma R, Srivastava V, Sakalle UK (2019). RSC Adv 9:9522

    Article  CAS  Google Scholar 

  9. Dar SA, Srivastava V, Sakalle UK (2019). J Magn Magn Mater 484:298–306

    Article  CAS  Google Scholar 

  10. Webster PJ, Ziebeck KRA Alloys and compounds of d-elements with main group elements. Part 2, Landolt-Bornstein, New Series, Group III, 19 (Springer, Berlin 1988) 75–184

  11. Marukame T, Ishikawa T, Hakamata S, Matsuda K, Urmura T, Yamamoto M (2007). Appl Phys Lett 90:012580

    Article  CAS  Google Scholar 

  12. Wurmehl S, Fecher GH, Ksenofontov V, Casper F, Stumm U, Felser C. J Appl Phys 99(2006):08J103

  13. de Groot RA, Müller FM, van Engen PG, Buschow KHJ (1983). Phys Rev Lett 50:2024

    Article  Google Scholar 

  14. Shutoh N, Sakurada S (2005). J Alloys Compd 389:204

    Article  CAS  Google Scholar 

  15. Kübler J, William AR, Sommers CB (1983). Phys Rev B 28:1745

    Article  Google Scholar 

  16. J. Pierre, R.V. Skolozdra, J. Tobola, S. Kaprzyk, C. Hordequin, M.A. Kouacou, I. Karla, R. Currat, and E. LelievreBerna, J. Alloys Compds. 101 (1997) 262–263

  17. Tobola J, Kaprzyk S, Pecheur P (2003). Physics Status Solidi (b) 236:531

    Article  CAS  Google Scholar 

  18. Wurmehl S, Fecher GH, Kandpal HC, Ksenofontov V, Felser C (2006). Appl Phys Lett 86:032502

    Google Scholar 

  19. Gillessen M, Dronskowski R (2010). J Comput Chem 31:612

    CAS  PubMed  Google Scholar 

  20. Tezuka N, Ikeda N, Sugimoto S, Inomata K (2006). Appl Phys Lett 89:252508

    Article  CAS  Google Scholar 

  21. Galanakis I, Dederichs PH, Papanikolaou N (2002). Phys Rev B 66:174429

    Article  CAS  Google Scholar 

  22. Wang L, Zhu X (2016). J Alloys Compd 679:74

    Article  CAS  Google Scholar 

  23. Kaur K, Rai DP, Thapa RK, Srivastava S (2017). J Appl Phys 122(4):045110

    Article  CAS  Google Scholar 

  24. Luo H, Liu B, Xin Y, Jia P, Meng F, Liu E, Wang W, Wu G (2015). J Magn Magn Mater 395:195

    Article  CAS  Google Scholar 

  25. Kumar SO, Shukla V, Srivastava SK (2018). Mater Lett 225:134

    Article  CAS  Google Scholar 

  26. Schroeder K, Waybright J, Kharel P, Zhang W, Valloppilly S, Herran J, Lukashev P, Huh Y, Skomski R, Sellmyer DJ (2018). AIP Adv 8:056431

    Article  CAS  Google Scholar 

  27. Rowe DM (ed) (1995) CRC handbook of thermoelectrics. CRC, Boca Raton

    Google Scholar 

  28. Matsubara K (2002) in International Conference on Thermoelectrics, p. 418

  29. Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder GJ (2011). Nature 473:66

    Article  CAS  PubMed  Google Scholar 

  30. LaLonde AD, Pei Y, Wang H, Snyder GJ (2011). Mater Today 14:526

    Article  CAS  Google Scholar 

  31. Jood P (2011). Nano Lett 11:4337

    Article  CAS  PubMed  Google Scholar 

  32. Enamullah S-C, Lee J (2018). Alloys Compd 742:903

    Article  CAS  Google Scholar 

  33. Al S, Arikan N, Demir S, Iyigör A (2018). Physica B 531:16

    Article  CAS  Google Scholar 

  34. Paudel R, Zhu J (2018). J Magn Magn Mater 453:10

    Article  CAS  Google Scholar 

  35. Fadila B, Ameri M, Bensaid D, Noureddine M, Ameri I, Mesbah S, Al-Douri Y (2018). J Magn Magn Mater 444:208

    Article  CAS  Google Scholar 

  36. I. Asfour, H.Rached, D.Rached, M.Caid, M.Labair, 742 (2018) 726

  37. Blaha P, Schwarz K, Madsen GKH, Kuasnicke D, Luitz J (2001) Introduction to WIEN2K, an augmented plane wave plus local orbitals program for calculating crystal properties, Vienna university of technology, Vienna, Austria

  38. Sanvito S, Oses C, Xue J, Tiwari A, Zic M, Archer T, Tozman P, Venkatesan M, Coey M, Curtarolo S (2017). Sci Adv 3:e1602241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wu Z, Cohen RE, Phys Rev B 73 (2006)

  40. Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  41. Dar SA, Srivastava V, Sakalle UK, Pagare G (2018). Computational Condensed Matter 14:137–143

    Article  Google Scholar 

  42. Aisimov VI, Solovye IV, Korotin MA, Czyzyk MT, Sawatzky GA (1993). Phyical Review B 48:16929

  43. Monkhorst HJ, Pack JD (1976). Phys Rev B 13:5188

    Google Scholar 

  44. Charpin T (2001) A package for calculating elastic tensors of cubic phases using WIEN: laboratory of geometrix F-75252 (Paris, France)

  45. Otero-de-la-Roza A, Luaña V (2011). Phys Rev B 84:184103

    Article  CAS  Google Scholar 

  46. Dar SA, Sharma R, Mishra AK (2019). J Mol Graph Model 90:120–127

    Article  CAS  PubMed  Google Scholar 

  47. Blanco MA, Pendas AM, Francisco EJ (1996). J Mol Struct THEOCHEM 268:245

    Article  Google Scholar 

  48. Madsen GKH, Singh DJ (2006). Comput Phys Commun 175:67

    Article  CAS  Google Scholar 

  49. Katsnelson MI, Irkhin VY, Chioncel L, Lichtenstein AI, de Groot RA (2008). Rev Mod Phys 80:315

    Article  CAS  Google Scholar 

  50. Sinko GV, Smirnov NA (2002). J Phys Condens Matter 14:6989

    Article  CAS  Google Scholar 

  51. Reuss A, Angew Z (1929). Mater Phys 9:49

    CAS  Google Scholar 

  52. Hill R (1952). Proceedings of Physical Society (London) 65:349

  53. Dar SA, Srivastava V, Sakalle UK, Parey V (2018). European Physical Journal Plus 131:64

    Article  CAS  Google Scholar 

  54. Pugh SF (1954).Philosophical Magazine 45:823

  55. Dar SA, Srivastava V, Sakalle UK (2018). J Mol Model 24:52

    Article  PubMed  CAS  Google Scholar 

  56. Petit AT, Dulong PL (1819). Ann Chim Phys 10:395

    Google Scholar 

  57. Quiang L, Duo-Hui H, Qi-Long C, Fan-Hou W (2013). Chin Phys B 22:037101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Ahmad Dar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar, S.A. Investigation of electronic, magnetic, elastic, mechanical, thermodynamic, and thermoelectronic properties of Mn2PtV Heusler alloy: ab initio study. J Mol Model 26, 35 (2020). https://doi.org/10.1007/s00894-020-4290-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4290-2

Keywords

Navigation