Skip to main content

Advertisement

Log in

High pressure and high temperature investigation of metallic perovskite SnTaO3

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

High pressure electronic, elastic, mechanical, and thermodynamic properties of cubic perovskite SnTaO3 have been explored with density function theory (DFT), and the quasi-harmonic Debye model has been applied for the incorporation of high temperature. The experimental lattice constant has been used for the optimization of structure. The optimization results present the paramagnetic (PM) nature of the compound. The spin dependent electronic band structures at ambient conditions and under high pressure present the metallic nature with complete uniformity for the majority and minority spin states. The mechanical properties, such as Young’s modulus and bulk modulus, have been calculated and suggest an increase in stiffness and hardness of the material under the application of pressure. The thermodynamic properties, such as specific heat and Grüneisen parameter, have been predicted in the temperature range of 0 to 1000 K and pressure range of 0 to 60 Gpa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pilania G, Balachandran PV, Kim C, Lookman T (2016) Front Mater 3:13285

    Article  Google Scholar 

  2. Moore EA (2008) Annu Rep Prog Chem Sect A: Inorg Chem 104:46

    Article  CAS  Google Scholar 

  3. Ali Z, Khan I, Ahmad I, Naeem S, Rahnamaye Aliabad HA, Asadabidi SJ, Zhang Z (2013) Phys B 423:16

    Article  CAS  Google Scholar 

  4. Ali Z, Shafiq M, Asadabidi SJ, Rahnamaya HA, Abid A, Khan I, Ahmad I (2014) Comput Mater Sci 81:141

    Article  CAS  Google Scholar 

  5. Dar SA, Srivastava V, Sakalle UK (2017) J Elec Mater 46:6870

    Article  CAS  Google Scholar 

  6. Muralidhar M, Sakai N, Jirsa M, Murakami M, Koshizuka N (2003) Supercond Sci Technol 16:L46

    Article  CAS  Google Scholar 

  7. Levin JY, Chan JE, Maslar TA (2001) Vanderah. J Appl Physiol 90:904

    Article  CAS  Google Scholar 

  8. Raja SN, Bekenstein Y, Koc MA, Fischer S, Zhang D, Lin L, Ritchie RO, Yang P, Alivisatos AP (2016) Appl Mater Interfaces 8(51):35523

    Article  CAS  Google Scholar 

  9. Long R, Prezhdo OV (2016) J Phys Chem Lett 8(1):193

    Article  Google Scholar 

  10. dela Calle C, Alonso JA, Garcia-Hernamdez M, Pomjakushin V (2006) J Solid State Chem 179:1636

    Article  Google Scholar 

  11. Park MS, Min BI (2005) Phys Rev B 71:052405

    Article  Google Scholar 

  12. Wang HH, Yang GZ, Cui DF, Lu HB, Zhao T, Chen F, Zhou YL, Chen ZH, Lan YC, Ding Y, Chen L, Chen XL, Liang JK (2001) J Vac Sci Technol A 19:930

    Article  CAS  Google Scholar 

  13. Majid A, Lee YS (2010) Adv Inf Sci Serv Sci 2:3

    Google Scholar 

  14. Moreira RL (2007) A J Dias Phys Chem Solids 68:1617

    Article  CAS  Google Scholar 

  15. Jiang LQ, Guob JK, Liua HB, Zhua M, Zhoua X, Wuc P et al (2006) J Phys Chem Solids 67:1531

    Article  CAS  Google Scholar 

  16. Ali Z, Ahmad I, Khan I, Amin B (2012) Intermatillics 31:287

    Article  CAS  Google Scholar 

  17. Hohenberg P, Kohn W (1964) Phys Rev B 64:136

    Google Scholar 

  18. dela Roza O, Abbasi-Perez D, Luaea V (2011) Comput Phys Commun 182:2232

    Article  Google Scholar 

  19. Dar SA, Srivastava V, Sakalle UK (2017) J Supercond Nov Magn 30:3055

    Article  CAS  Google Scholar 

  20. Reshak AH (2015) Phys Chem Chem Phys 17:8006

    Article  CAS  Google Scholar 

  21. Goumri-Said S, Ahmed R, Kanoun MB (2016) Renew Energy 90:114

    Article  CAS  Google Scholar 

  22. Dar SA, Srivastava V, Sakalle UK, Khandy SA, Supcon J (2017) Novl Magn. https://doi.org/10.1007/s10948-017-4365-1

  23. Dar SA, Srivastava V, Sakalle UK (2017) Mater Res Express 4:086304

    Article  Google Scholar 

  24. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2k, an augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Vienna

    Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  26. Monkhorst HJ, Park JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  27. Charpin T (2001) A package for calculating elastic tensors of cubic phases using WIEN: Laboratory of Geometrix F-75252. Paris, France

    Google Scholar 

  28. Birch F (1947) Phys Rev 71:809

    Article  CAS  Google Scholar 

  29. Dar SA, Srivastava V, Sakalle UK (2017) Mater Res Express 4:106104

    Article  Google Scholar 

  30. Hill R (1952) Proc Phy Soc London 65:349

    Article  Google Scholar 

  31. Reuss A, Angew Z (1929) Mater Phys 9:49

    CAS  Google Scholar 

  32. Pugh SF (1954) Philos Mag 45:823

    Article  CAS  Google Scholar 

  33. Pettifor DG (1992) Mater Sci Technol 8:345

    Article  CAS  Google Scholar 

  34. Schreiber E, Anderson OL, Soga N (1973) Elastic constants and measurements. McGraw-Hill, New York

  35. Bencherif K, Yakoubi A, Della N, Abid OM, Khachai H, Ahmad R, Khenata R, Omran SB, Gupta SK, Murtaza G (2016) J Elec Materials 45:3479

    Article  CAS  Google Scholar 

  36. Petit AT, Dulong PL (1819) Ann Chim Phys 10:395

    Google Scholar 

  37. Quiang L, Duo-Hui H, Qi-Long C, Fan-Hou W (2013) Chin Phys B 22:037101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Ahmad Dar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar, S.A., Srivastava, V. & Sakalle, U.K. High pressure and high temperature investigation of metallic perovskite SnTaO3. J Mol Model 24, 52 (2018). https://doi.org/10.1007/s00894-018-3606-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3606-y

Keywords

Navigation