Skip to main content
Log in

Theoretical prediction of the trigger linkage, cage strain, and explosive sensitivity of CL-20 in the external electric fields

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In order to add safely external electric fields into the systems of the explosives with strong cage strain, the effects of the external electric fields on the strengths of trigger linkages, cage strain energies (CSEs), surface electrostatic potentials (ESPs), as well as impact and shock initiation sensitivities of CL-20 were investigated using the B3LYP and M06–2X methods with 6–311++G(2d,p) basis set. The results show that the changes of the strengths of the N–NO2 bonds are more notable than those of the bonds forming cage, and the changes involving the N–NO2 bonds attached to the five-membered ring are more significant than those attached to the six-membered ring. In most cases, the CSEs in the electric fields are stronger than those in no field. From the BDEs, the N–NO2 cleavage is the decomposition reaction pathway in detonation initiation. However, from the surface ESPs, the N–NO2 cleavage, C–N and C–C bond breaking may initiate the reactions. The global ESPs are more reasonable and reliable to estimate the impact sensitivities of the cage-shaped explosives. The changes of the bond lengths, Mulliken bond orders, nitro group charges and BDEs correlate well with the external electric field strengths. Interestingly, an abnormal result is found that the h50 values in the electric fields are larger than those in no field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

We confirm the availability of all the data and materials in this manuscript.

References

  1. Tasker DG (1985) The properties of condensed explosives for electromagnetic energy coupling. NSWC TR, Silver Spring, Maryland, pp 85–360

    Book  Google Scholar 

  2. Demske DL (1982) The experimental aspects of coupling electrical energy into a dense detonation wave: part 1. NSWC TR, Silver Spring, Maryland, pp 79–143

    Book  Google Scholar 

  3. Lee EA, Drake RC, Richardson J (2014) A view on the functioning mechanism of EBW detonators-part 3: explosive initiation characterisation. J Phys: Conf Ser 500:182023

    Google Scholar 

  4. Abdulazeem MS, Alhasan AM, Abdulrahmann S (2011) Initiation of solid explosives by laser. Int J Therm Sci 50:2117–2121

    Article  CAS  Google Scholar 

  5. Zhao L, Yi T, Zhu H, Fu Q, Sun X, Yang S, Zheng W, Jiang S (2019) Electromagnetic pulse effect during the bridge wire electric explosion. Chin J Energ Mater 27:481–486

    Google Scholar 

  6. Borisenok VA, Mikhailov AS, Bragunets VA (2011) Investigation of the polarization of explosives during impact and the influence of an external electric field on the impact sensitivity of superfine PETN. Russ J Phys Chem B 5:628–639

    Article  CAS  Google Scholar 

  7. Rodzevich AP, Gazenaur EG, Kuzmina LV, Krasheninin VI, Gazenaur NV (2017) The effect of electric field in the explosive sensitivity of silver Azide. J Phys Conf Ser 830:012131–0121~6

    Article  Google Scholar 

  8. Piehler T, Hummer C,Benjamin R, Summers E, McNesby K, Boyle V (2013) Preliminary study of couplingelectrical energy to detonation reaction zone of primasheet-1000 explosive.27th international symposium on ballistics, freiburg, Germany, April22–26, pp 714–724

  9. Wang WJ, Sun XJ, Zhang L, Lei F, Guo F, Yang S, Fu QB (2019) Sub-microsecond interferometry diagnostic and 3D dynamic simulation of the bridgewire electrical explosion. Chin J Energ Mater 27:473–480

    Google Scholar 

  10. Sarkisov GS, Rosenthal SE, Struve KW (2007) Thermodynamical calculation of metal heating in nanosecond exploding wire and foil experiments. Rev Sci Instrum 78:043505–0431~5

    Article  CAS  PubMed  Google Scholar 

  11. Politzer P, Murray JS, Concha MC, Lane P (2007) Effects of electric fields upon energetic molecules: nitromethane and dimethylnitramine. Cent Eur J Energetic Mater 4:3–21

    CAS  Google Scholar 

  12. Politzer P, Murray JS, Lane P (2009) Computational determination of effects of electric fields upon “trigger linkages” of prototypical energetic molecules. Int J Quantum Chem 109:534–539

    Article  CAS  Google Scholar 

  13. Politzer P, Murray JS (2009) Computed effects of electric fields upon the C–NO2 and N–NO2 bonds of nitromethane and dimethylnitramine. Int J Quantum Chem 109:3–7

    Article  CAS  Google Scholar 

  14. Song X, Ji S, Cheng X (2007) The molecular properties of some nitrobenzene explosives in elecric field. J At Mol Phys 24:916–920

    CAS  Google Scholar 

  15. Li JS (2010) A quantitative relationship for the shock sensitivities of energetic compounds based on X–NO2 (X = C, N, O) bond dissociation energy. J Hazard Mater 180:768–772

    Article  CAS  PubMed  Google Scholar 

  16. Cao CZ, Gao S (2007) Two dominant factors influencing the impact sensitivities of nitrobenzenes and saturated nitro compounds. J Phys Chem B 111:12399–12402

    Article  CAS  PubMed  Google Scholar 

  17. Li ZM, Huang HS, Zhang TL, Zhang ST, Zhang JG, Yang L (2014) First-principle study of electric field effects on the structure, decomposition mechanism and stability of crystalline lead styphnate. J Mol Model 20:2072

    Article  PubMed  Google Scholar 

  18. Lv L, Wei Y, Tao Z, Yang F, Wu D, Yang M (2017) Effect of an external electric field on the C-N cleavage reactions in nitromethane and triaminotrinitrobenzene. Comput Theor Chem 1117:215–219

    Article  CAS  Google Scholar 

  19. Tao Z, Wang X, Wei Y, Lv L, Wu D, Yang M (2016) A theoretical study of molecular structure, optical properties and bond activation of energetic compound FOX-7 under intense electric fields. Chem Phys 483–484:122–131

    Google Scholar 

  20. Wei LL, Miao F (2019) Decomposition simulation of hexogen composites embedded with carbon nanotubes induced by electric field. Nucl Fusion Plasma Phys 2:175–180

    Google Scholar 

  21. Wang JP, Zhai DD, Ma P, Ma CM, Pan Y, Jiang JC, Zhu SG (2020) Theoretical insight into the effects of external electric field on cocrystal HMX/DMI. Chin J Explos Propellant 43:133–138

    Google Scholar 

  22. Ren FD, Cao DL, Shi WJ, You M, Li M (2015) A theoretical prediction of the possible trigger linkage of CH3NO2 and NH2NO2 in an external electric field. J Mol Model 21:145

    Article  PubMed  Google Scholar 

  23. Li P, Zhang C, Ren FD, Cao Q, Li XJ, Cao RL (2017) Theoretical insight into the structure and stability of TNT and RDX in external electric field. Indian J Pure Appl Phys 55:604–615

    Google Scholar 

  24. Wang B, Ren F, Wang Y (2019) Theoretical prediction of the trigger linkages, surface electrostatic potentials, and explosive sensitivities of 1,4-dinitroimidazole-N-oxide in the external electric fields. J Mol Model 25:368

    Article  CAS  PubMed  Google Scholar 

  25. Ren FD, Cao DL, Shi WJ (2016) A dynamics prediction of nitromethane→methyl nitrite isomerizatioin in external electric field. J Mol Model 22:96

    Article  PubMed  Google Scholar 

  26. Ren FD, Cao DL, Shi WJ, You M (2017) A dynamics prediction of stability for nitromethane in external electric field. RSC Adv 7:47063–47072

    Article  CAS  Google Scholar 

  27. Feng R, Zhang S, Ren F, Wang C (2016) Theoretical study on the sensitivity of HMX/FOX-7 cocrystal explosive with different molecular molar ratios in external electric fields. Chem Res Appl 28:479–486

    Google Scholar 

  28. Zhang J, Du H, Wang F, Gong X, Ying S (2011) Crystal structure, detonation performance, and thermal stability of a new polynitro cage compound: 2, 4, 6, 8, 10, 12, 13, 14, 15-nonanitro-2, 4, 6, 8, 10, 12, 13, 14, 15-nonaazaheptacyclo [5.5.1.13,11.15,9] pentadecane. J Mol Model 18:2369–2376

    Article  PubMed  Google Scholar 

  29. Tan B, Long X, Li J (2012) The cage strain energies of high-energy compounds. Comput Theor Chem 993:66–72

    Article  CAS  Google Scholar 

  30. Wheeler SE, Houk KN, Schleyer PVR, Allen WD (2009) A hierarchy of homodesmotic reactions for thermochemistry. J Am Chem Soc 131:2547–2560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Patil DG, Brill TB (1991) Thermal decomposition of energetic materials 53. Kinetics and mechanism of thermolysis of hexanitrohexazaisowurtzitane. Combust Flame 87:145–151

    Article  CAS  Google Scholar 

  32. Patil DG, Brill TB (1993) Thermal decomposition of energetic materials 59. Characterization of the residue of hexanitrohexaazaisowurtzitane. Combust Flame 92:456–458

    Article  CAS  Google Scholar 

  33. Naik NH, Gore GM, Gandhe BR, Sikder AK (2008) Studies on thermal decomposition mechanism of CL-20 by pyrolysis gas chromatography–mass spectrometry (Py-GC/MS). J Hazard Mater 159:630–635

    Article  CAS  PubMed  Google Scholar 

  34. Okovytyy S, Kholod Y, Qasim M, Fredrickson H, Leszczynski J (2005) The mechanism of unimolecular decomposition of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane. A computational DFT study. J Phys Chem A 109:2964–2970

    Article  CAS  PubMed  Google Scholar 

  35. Isayev O, Gorb L, Qasim M, Leszczynski J (2008) Ab initio molecular dynamics study on the initial chemical events in nitramines: thermal decomposition of CL-20. J Phys Chem B 112:11005–11013

    Article  CAS  PubMed  Google Scholar 

  36. Xue X, Wen Y, Zhang C (2016) Early decay mechanism of shocked ε-CL-20: a molecular dynamics simulation study. J Phys Chem C 120:21169–21177

    Article  CAS  Google Scholar 

  37. Xue X, Ma Y, Zeng Q, Zhang C (2017) Initial decay mechanism of the heated CL-20/HMX cocrystal: a case of the cocrystal mediating the thermal stability of the two pure components. J Phys Chem C 121:4899–4908

    Article  CAS  Google Scholar 

  38. Ren C, Li X, Guo L (2018) Reaction mechanisms in the thermal decomposition of CL-20 revealed by reaxFF molecular dynamics simulations. Acta Phys -Chim Sin 34:1151–1162

    Article  CAS  Google Scholar 

  39. Yan Q-L, Zeman S, Sánchez Jiménez PE, Zhang T-L, Pérez-Maqueda LA, Elbeih A (2014) The mitigation effect of synthetic polymers on initiation reactivity of CL-20: physical models and chemical pathways of thermolysis. J Phys Chem C 118:22881–22895

    Article  CAS  Google Scholar 

  40. Kumar MA, Ashutosh P, Vargeese AA (2019) The decomposition mechanism of hexanitrohexaazaisowurtzitane (CL-20) by coupled computational and experimental study. J Phys Chem A 123:4014–4020

    Article  CAS  PubMed  Google Scholar 

  41. Wang F, Chen L, Geng D, Lu J, Wu J (2019) Molecular dynamics simulations of initial chemical reaction mechanism of shocked CL-20 crystals containing nanovoids. J Phys Chem C 123:23845–23852

    Article  CAS  Google Scholar 

  42. Frisch MJ, TrucksGW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V,Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, IzmaylovAF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R,Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T,Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E,Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A,Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE,Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O,Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG,Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, ForesmanJB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Inc.. USA: WallingfordCT

  43. Murray JS, Politzer P (2011) The electrostatic potential: an overview. WIREs Comput Mol Sci 1:153–163

    Article  CAS  Google Scholar 

  44. Gimarc BM, Zhao M (1997) Strain and resonance energies in main-group homoatomic rings and clusters. Coord Chem Rev 158:385–412

    Article  CAS  Google Scholar 

  45. Wodrich MD, Gonthier JF, Steinmann SN, Corminboeuf C (2010) How strained are carbomeric-cycloalkanes? J Phys Chem A 114:6705–6712

    Article  CAS  PubMed  Google Scholar 

  46. Zhou G, Wang J, He W-D, Wong N-B, Tian A, Li W-K (2002) Theoretical investigation of four conformations of HNIW by B3LYP method. J Mol Struct (THEOCHEM) 589–590:273–280

    Article  Google Scholar 

  47. Zhang C, Shu Y, Huang Y, Zhao X, Dong H (2005) Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. J Phys Chem B 109:8978–8982

    Article  CAS  PubMed  Google Scholar 

  48. Li JS (2010) A multivariate relationship for the impact sensitivities of energetic N-nitrocompounds based on bond dissociation energy. J Hazard Mater 171:728–733

    Article  Google Scholar 

  49. Song XS, Cheng XL, Yang XD, He B (2006) Relationship between the bond dissociation energies and impact sensitivities of some nitro–explosives. Propellants Explos Pyrotech 31:306–310

    Article  CAS  Google Scholar 

  50. Tan B, Long X, Peng R, Li H, Jin B, Chu S, Dong H (2010) Two important factors influencing shock sensitivity of nitro compounds: bond dissociation energy of X–NO2 (X = C, N, O) and Mulliken charges of nitro group. J Hazard Mater 183:908–912

    Article  CAS  PubMed  Google Scholar 

  51. Zhao J, Xu DH, Cheng XL (2010) Investigation of correlation between impact sensitivities and bond dissociation energies in some triazole energetic compounds. J Struct Chem 21:1235–1240

    Article  CAS  Google Scholar 

  52. Rice BM, Hare JJ (2002) A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J Phys Chem A 106:1770–1783

    Article  CAS  Google Scholar 

  53. Shao J, Cheng X, Yang X, Zhang F, Ge S (2006) Calculations of bond dissociatioin energies and bond lengths of C–H, C–N, C–O, N–N. J At Mol Phys 23:80–84

    CAS  Google Scholar 

  54. Politzer P, Murray JS (2002) The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Accounts 108:134–142

    Article  CAS  Google Scholar 

  55. Politzer P, Murray JS (2014) Impact sensitivity and crystal lattice compressibility/free space. J Mol Model 20:2223–2230

    Article  PubMed  Google Scholar 

  56. Murray JS, Concha MC, Politzer P (2009) Links between surface electrostatic potentials of energetic molecules, impact sensitivities and C–NO2/N–NO2 bond dissociation energies. Mol Phys 107:89–97

    Article  CAS  Google Scholar 

  57. Politzer P, Murray JS (2014) In: Brinck T (ed) Green Energetic Materials, vol 3. Wiley, Chichester, pp 45–62

    Chapter  Google Scholar 

  58. Klapötke TM, Nordheiter A, Stierstorfer J (2012) Synthesis and reactivity of an unexpected highly sensitive 1-carboxymethyl-3-diazonio-5-nitrimino-1,2,4-triazole. New J Chem 36:1463–1468

    Article  Google Scholar 

  59. Politzer P, Murray JS (1996) Relationships between dissociation energies and electrostatic potentials of C–NO2 bonds: applications to impact sensitivities. J Mol Struct 376:419–424

    Article  CAS  Google Scholar 

  60. Politzer P, Murray JS (2015) Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum heat of detonation per unit volume. J Mol Model 21:25–35

    Article  PubMed  Google Scholar 

  61. Murray JS, Lane P, Politzer P (1998) Effects of strongly electron-attracting components on molecular surface electrostatic potentials application to predicting impact sensitivities of energetic molecules. Mol Phys 93:187–194

    Article  CAS  Google Scholar 

  62. Yang Z, Li H, Huang H, Zhou X, Li J, Nie F (2013) Preparation and performance of a HNIW/TNT cocrystal explosive. Propellants Explos Pyrotech 38:495–501

    Article  CAS  Google Scholar 

  63. Vaullerin M, Espagnacq A, Morin-Allory L (1998) Prediction of explosives impact sensitivity. Propellants Explos Pyrotech 23:237–242

    Article  CAS  Google Scholar 

  64. Pi Z, Chen L, Liu D, Wu J (2017) Shock initiation of CL-20 based explosives. Explos Shock Waves 37:915–923

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the Shanxi Province Natural Science Foundation of China (No. 201801D121067).

Author information

Authors and Affiliations

Authors

Contributions

Kang-bo Sun: conceptualization, data curation, investigation, writing–original draft

Shu-hai Zhang: project administration, writing–review and editing

Fu-de Ren: calculation and data curation

Yong-Ping Hao: methodology and calculations

Shu-hong Ba: calculations of ESPs

Corresponding authors

Correspondence to Kang-bo Sun or Shu-hai Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

We allow the journal to review all the data, and we confirm the validity of results. There is none of the financial relationships. This manuscript was not published previously and it is not submitted to more than one journal. It is also not split up into several parts to submit. No data have been fabricated or manipulated.

Participation

All the authors (Kang-bo Sun, Shu-hai Zhang, Fu-de Ren, Yong-Ping Hao, Shu-hong Ba) agree to participate in this investigation.

Consent for publication

All the authors agree to publish the manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Kb., Zhang, Sh., Ren, Fd. et al. Theoretical prediction of the trigger linkage, cage strain, and explosive sensitivity of CL-20 in the external electric fields. J Mol Model 27, 85 (2021). https://doi.org/10.1007/s00894-020-04634-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04634-8

Keywords

Navigation