Skip to main content
Log in

Charge ordering in the metal–insulator transition of V-doped CrO2 in the rutile structure

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

A Correction to this article was published on 24 March 2023

This article has been updated

Abstract

Electronic, magnetic, and structural properties of pure and V-doped CrO2 were extensively investigated utilizing density functional theory. Usually, pure CrO2 is a half-metallic ferromagnet with conductive spin majority species and insulating spin minority species. This system remains in its half-metallic ferromagnetic phase even at 50% V-substitution for Cr within the crystal. The V-substituted compound Cr0.5V0.5O2 encounters metal–insulator transition upon the application of on-site Coulomb repulsion U = 7 eV preserving its ferromagnetism in the insulating phase. It is revealed in this study that Cr3+-V5+ charge ordering accompanied by the transfer of the single V-3d electron to the Cr-3dt2g orbitals triggers metal–insulator transition in Cr0.5V0.5O2. The ferromagnetism of Cr0.5V0.5O2 in the insulating phase arises predominantly due to strong Hund’s coupling between the occupied electrons in the Cr-t2g states. Besides this, the ferromagnetic Curie temperature (Tc) decreases significantly due to V-substitution. Interestingly, a structural distortion is observed due to tilting of CrO6 or VO6 octahedra across the metal–insulator transition of Cr0.5V0.5O2.

The V-doped compound Cr0.5V0.5O2 is found a half-metallic ferromagnet (HMF) in the absence of on-site Coulomb interaction (U). This HMF behavor maintains up to U = 6 eV. Eventually, this system encounters metal-insulator transition (MIT) upon the application of U = 7 eV with a band gap of Eg ~ 0.31 eV. Nevertheless, applications of higher U widen the band gaps. In this figure, calculated total (black), Cr-3d (red), V-3d (violet), and O-2p (blue) DOS of Cr0.5V0.5O2 for U = 8 eV are illustrated. The system is insulating with a band gap of Eg ~ 0.7 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. Daughton JM (1997) Magnetic tunnelling applied to memory (invited). J Appl Phys 81:3758

    Article  CAS  Google Scholar 

  2. Zhu JG, Zheng Y, Prinz GA (2000) Ultrahigh density vertical magnetoresistive random access memory (invited). J Appl Phys 87:6668

    Article  CAS  Google Scholar 

  3. Han XF, Wen ZC, Wei HX (2008) Nanoring magnetic tunnel junction and its application in magnetic random access memory demo devices with spin-polarized current switching (invited). J Appl Phys 103:07E933

    Article  Google Scholar 

  4. Wood R (2009) Future hard disk drive systems. J Magn Magn Mater 321:555–561

    Article  CAS  Google Scholar 

  5. Lu J, West KG, Wolf SA (2010) Thin film metal-oxides. Ed. Ramanathan S Springer (US): p 95

  6. Schwarz K (1986) CrO2 predicted as a half-metallic ferromagnet. J Phys F: Met Phys 16(9):L211

    Article  CAS  Google Scholar 

  7. Kämper KP, Schmitt W, Güntherodt G, Gambino RJ, Ruf R (1987) CrO2-a new half-metallic ferromagnet? Phys Rev Lett 59(24):2788

    Article  Google Scholar 

  8. Soulen RJ, Byers Jr JM, Osofsky MS, Nadgorny B, Ambrose T, Cheng SF, Broussard PR, Tanaka CT, Nowak J, Moodera JS, Barry A, Coey JMD (1998) Measuring the spin polarization of a metal with a superconducting point contact. Science 282(5386):85–88

    Article  CAS  Google Scholar 

  9. Anguelouch A, Gupta A, Xiao G, Abraham DW, Ji Y, Ingvarsson S, Chien CL (2001) Near-complete spin polarization in atomically-smooth chromium-dioxide epitaxial films prepared using a CVD liquid precursor. Phys Rev B 64(18):180408

    Article  Google Scholar 

  10. Muller GM, Walowski J, Djordjevic M, Miao GX, Gupta A, Ramos AV, Gehrke K, Moshnyaga V, Samwer K, Schmalhorst J et al (2009) Spin polarization in half-metals probed by femtosecond spin excitation. Nat Mater 8:56

    Article  Google Scholar 

  11. Anwar MS, Czeschka F, Hasselberth M, Porcu M, Aarts J (2010) Long-range supercurrents through half-metallic ferromagnetic CrO2. Phys Rev B 82:100501(R)

    Article  Google Scholar 

  12. Anwar MS, Aarts J (2013) Anomalous transport in half-metallic ferromagnetic CrO2. Phys Rev B 88:085123

    Article  Google Scholar 

  13. Fujiwara H, Sunagawa M, Terashima K, Kittaka T, Wakita T, Muraoka Y, Yokoya T (2015) Intrinsic spin-polarized electronic structure of CrO2 epitaxial film revealed by bulk-sensitive spin-resolved photoemission spectroscopy. Appl Phys Lett 106:202404

    Article  Google Scholar 

  14. Takeda H, Shimizu Y, Kobayashi Y, Itoh M, Jinno T, Isobe M, Ueda Y, Yoshida S, Muraoka Y, Yokoya T (2016) Local electronic state in the half-metallic ferromagnet CrO2 investigated by site-selective 53Cr NMR measurements. Phys Rev B 93:235129

    Article  Google Scholar 

  15. Singh A, Jansen C, Lahabi K, Aarts J (2016) High-quality CrO2 nanowires for dissipation-less spintronics. Phys Rev X 6:041012

    Google Scholar 

  16. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:B864

    Article  Google Scholar 

  17. Kohn W, Sham LJ (1965) Self-consistent equations including exchange correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  18. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron gas correlation energy. Phys Rev B 45:13244

    Article  CAS  Google Scholar 

  19. Anderson OK, Jepsen O (1984) Explicit, first-principles tight-binding theory. Phys Rev Lett 53:2571

    Article  Google Scholar 

  20. Anderson OK (1975) Linear methods in band theory. Phys Rev B 12:3060

    Article  Google Scholar 

  21. Coey JMD, Venkatesan M (2002) Half-metallic ferromagnetism: example of CrO2 (invited). J Appl Phys 91(10):8345–8350

    Article  CAS  Google Scholar 

  22. Shirley DA, Martin RL, Kowalczyk SP, McFeely FR, Ley L (1977) Core-electron binding energies of the first thirty elements. Phys Rev B 15:544

    Article  CAS  Google Scholar 

  23. Harry G (1964) Electrons and chemical bonding. Benjamin, New York

    Google Scholar 

  24. Piper LFJ, DeMasi A, Cho SW, Preston ARH, Laverock J, Smith KE, West KG, Lu JW, Wolf SA (2010) Soft x-ray spectroscopic study of the ferromagnetic insulator V0.82Cr0.18O2. Phys Rev B 82(23):235103

    Article  Google Scholar 

  25. Williams ME, Sims H, Mazumdar D, Butler WH (2012) Effects of 3d and 4d transition metal substitutional impurities on electronic properties of CrO2. Phys Rev B 86:235124

    Article  Google Scholar 

  26. Stoner EC (1936) Collective electron specific heat and spin paramagnetism in metals. Proc R Soc A 154:656

    Article  CAS  Google Scholar 

  27. Stoner EC (1938) Collective electron ferromagnetism. Proc R Soc Lond A 165:372

    Article  Google Scholar 

  28. Moriya T, Kawabata A (1973) Effect of spin fluctuations on itinerant electron ferromagnetism. J Phys Soc Jpn 34:639

    Article  CAS  Google Scholar 

  29. Suzuki K, Masuda Y (1985) Thermal expansion in itinerant electron magnetic Ni Al system. J Phys Soc Jpn 54:630

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarajit Biswas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S. Charge ordering in the metal–insulator transition of V-doped CrO2 in the rutile structure. J Mol Model 24, 111 (2018). https://doi.org/10.1007/s00894-018-3647-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3647-2

Keywords

Navigation