Skip to main content
Log in

Theoretical study of the effects of substituents (F, Cl, Br, CH3, and CN) on the aromaticity of borazine

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This paper presents a theoretical study of the effects of substituents (F, Cl, Br, CH3, and CN) on the aromaticity of borazine (B3N3H6), using density functional theory (DFT) and the Hartree-Fock (HF) method. The calculations to optimize the geometries, structural properties, and vibrational frequencies were performed using the same 6–311G(d,p) and 6–311++G(d,p) basis sets, comparing the methods with experimental results. In the analysis of the NICSZZ values, it was found that that replacing the hydrogen atoms by halogen atoms (F, Cl, and Br) and CH3 reduced the aromaticity of the borazine molecule, while use of the CN group resulted in NICSZZ values (0.9–2.0 Å) very close to those of borazine, presenting the following order of increasing aromaticity: B3N3H3-(Br)3 < B3N3H3-(Cl)3 < B3N3H3-(F)3 < B3N3H3-(CH3)3 < B3N3H6 ~ B3N3H3-(CN)3. All the spectra of the compounds showed only the presence of transition peaks distant from the UV region, reflecting the large energy difference between the HOMO and LUMO orbitals. After the substitution of the borazine ring, all the compounds presented an intensification of the spectrum, with a shift of the maximum absorbance toward red, indicative of a bathochromic effect. There was a direct inverse relation between the energy gap and the maximum wavelength of the compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen P, Lalancette RA, Jäkle F (2012) π-expanded Borazine: an Ambipolar conjugated B–π–N macrocycle. Angew Chem In Ed 51:7994–7998

    Article  CAS  Google Scholar 

  2. Schleyer PVR, Jiao H, Hommes NJRVE, Malkin VG, Malkina OL (1997) An evaluation of the aromaticity of inorganic rings: refined evidence from magnetic properties. J Am Chem Soc 119:12669–12670

    Article  CAS  Google Scholar 

  3. Stock A, Pohland E (1926) Borwasserstoffe, VIII. Zur Kenntnis des B2H6 und des B5H11. Ber Dtsch Chem Ges 59:2210–2215

    Article  Google Scholar 

  4. Kesharwani MK, Suresh M, Das A, Ganguly B (2011) Borazine as a sensor for fluoride ion: a computational and experimental study. Tetrahedron Lett 52:3636–3639

    Article  CAS  Google Scholar 

  5. Kiran B, Phukan AK, Jemmis ED (2001) Is borazine aromatic? Unusual parallel behavior between hydrocarbons and corresponding B-N analogues. Inorg Chem 40:3615–3618

    Article  CAS  Google Scholar 

  6. Shen W, Li M, Li Y, Wang S (2007) Theoretical study of borazine and its derivatives. Inorg Chim Acta 360:619–624

    Article  CAS  Google Scholar 

  7. Jackson KT, Rabbani MG, Reich TE, El-Kaderi HM (2011) Synthesis of highly porous borazine-linked polymers and their application to H2, CO2, and CH4 storage. Polym Chem 2:2775–2777

    Article  CAS  Google Scholar 

  8. Harshbarger W, Lee GH, Porter RF, Bauer SH (1969) The structure of borazine. Inorg Chem 8:1683–1689

    Article  CAS  Google Scholar 

  9. Nöth H, Lima SR, Troll A (2005) The structural chemistry of N-monolithium borazines. Eur J Inorg Chem 2005:1895–1906

    Article  Google Scholar 

  10. Li JS, Zhang CR, Li B, Cao F, Wang SQ (2011) An investigation on the synthesis of borazine. Inorg Chim Acta 366:173–176

    Article  CAS  Google Scholar 

  11. Paine RT, Narula CK (1990) Synthetic routes to boron nitride. Chem Rev 90:73–91

    Article  CAS  Google Scholar 

  12. Jaschke T, Jansen MJ (2006) A new borazine-type single source precursor for Si/B/N/C ceramics. Mater Chem 16:2792–2799

    Article  Google Scholar 

  13. Haberecht J, Nesper R, Grutzmacher H (2005) A construction kit for Si-B-C-N ceramic materials based on borazine precursors. Chem Mater 17:2340–2347

    Article  CAS  Google Scholar 

  14. Haberecht J, Krumeich F, Grutzmacher H, Nesper R (2004) High-yield molecular borazine precursors for Si-B-N-C ceramics. Chem Mater 16:418–423

    Article  CAS  Google Scholar 

  15. Nghiem QD, Jeon JK, Hong LY, Kim DP (2003) Polymer derived Si-C-B-N ceramics via hydroboration from borazine derivatives and trivinylcyclotrisilazane. J Organomet Chem 688:27–35

    Article  CAS  Google Scholar 

  16. Toury B, Bernard S, Cornu D, Chassagneux F, Létoffé JM, Miele P (2003) High-performance boron nitride fibers obtained from asymmetric alkylaminoborazine. J Mater Chem 13:274–279

    Article  CAS  Google Scholar 

  17. Duriez C, Framery E, Toury B, Toutois P, Miele P, Vaultier M, Bonnetot BJ (2002) Boron nitride thin fibres obtained from a new copolymer borazine-tri(methylamino)borazine precursor. Organomet Chem 657:107–114

    Article  CAS  Google Scholar 

  18. Perdigon-Melon JA, Auroux A, Cornu D, Miele P, Toury B, Bonnetot B (2002) Porous boron nitride supports obtained from molecular precursors. Influence of the precursor formulation and of the thermal treatment on the properties of the BN ceramic. J Organomet Chem 657:98–106

    Article  CAS  Google Scholar 

  19. Cornu D, Miele P, Toury B, Bonnetot B, Mongeot H, Bouix J (1999) Boron nitride matrices and coatings from boryl borazine molecular precursors. J Mater Chem 9:2605–2610

    Article  CAS  Google Scholar 

  20. Lourie OR, Jones CR, Bartlett BM, Gibbons PC, Ruoff RS, Buhro WE (2000) CVD growth of boron nitride nanotubes. Chem Mater 12:1808–1810

    Article  CAS  Google Scholar 

  21. Loh KP, Fan WY, Lim CW, Zhang X, Chen W, Xie XN, Xu H, Wee ATS (2003) Reactive atom beam deposition of boron nitride ultrathin films and nanoparticles using borazine. Diam Relat Mater 12:1103–1107

    Article  CAS  Google Scholar 

  22. Volger KE, Kroke E, Gervais C, Saito T, Babonneau F, Riedel R, Iwamoto Y, Hirayama T (2003) B/C/N materials and B4C synthesized by a non-oxide sol-gel process. Chem Mater 15:755–764

    Article  Google Scholar 

  23. Bechelany M, Bernard S, Brioude A, Cornu D, Stadelmann P, Charcosset C, Fiaty K, Miele P (2007) Synthesis of boron nitride nanotubes by a template-assisted polymer thermolysis process. J Phys Chem C 111:13378–13384

    Article  CAS  Google Scholar 

  24. Watanabe K, Taniguchi T, Kanda H (2004) Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature 3:404–409

    Article  CAS  Google Scholar 

  25. Narula CK, Schaeffer R, Datye A, Paine RT (1989) Synthesis of boron nitride ceramics from 2,4,6-triaminoborazine. Inorg Chem 28:4053–4055

    Article  CAS  Google Scholar 

  26. Pauling L (1960) The nature of the chemical bond. Cornell University Press, New York

    Google Scholar 

  27. Benker D, Klapötke TM, Kuhn G, Li J, Miller C (2005) An ab initio valence bond (VB) calculation of the π delocalization energy in borazine, B3N3H6. Heteroat Chem 16:311–315

    Article  CAS  Google Scholar 

  28. Fowler PW, Steiner E (1997) Ring currents and aromaticity of monocyclic π-electron systems C6H6, B3N3H6, B3O3H3, C3N3H3, C5H5 , C7H7 +, C3N3F3, C6H3F3, and C6F6. J Phys Chem A 101:1409–1413

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, revision D. 01. Gaussian Inc., Wallingford

    Google Scholar 

  30. Pople JA, Gordon MH, Raghavachari K (1987) Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  31. Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  32. Lee C, Yang W, Parr RG (1988) Development of the colic-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  33. Hartree DR (1928) The wave mechanics of an atom with a noncoulomb central field. Part I. Theory and methods. Proc Camb Philos Soc 24:89–110

    Article  CAS  Google Scholar 

  34. Hartree DR (1928) The wave mechanics of an atom with a non-coulomb central field. Part II. Some results and discussion. Proc Camb Philos Soc 24:111–132

    Article  CAS  Google Scholar 

  35. Pople JA, Gordon MH, Fox DJ, Raghavachari K, Curtiss LA (1989) Gaussian-1 theory: a general procedure for prediction of molecular energies. J Chem Phys 90:5622–5629

    Article  CAS  Google Scholar 

  36. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) Gaussian-2 theory for molecular energies of first- and second-row compounds. J Chem Phys 94:7221–7230

    Article  CAS  Google Scholar 

  37. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  38. Glendening ED, Landis CR, Weinhold F (2012) Natural bond orbital methods. WIREs Comput Mol Sci 2:1–42

    Article  CAS  Google Scholar 

  39. Boyd RJ, Choi SC, Hale CC (1984) Electronic and structural properties of borazine and related molecules. Chem Phys Lett 112:136–141

    Article  CAS  Google Scholar 

  40. Miao R, Yang G, Zhao C, Hong J, Zhu L (2005) Theoretical study of borazine and its fluoroderivatives: aromaticity and cation–π, anion–π interaction. THEOCHEM J Mol Struct 715:91–100

    Article  CAS  Google Scholar 

  41. Shriver DF, Atkins PW, Overton TL, Rourke JP, Weller MT, Armstrong FA (2010) Inorganic chemistry4nd edn. Oxford University Press, New York

    Google Scholar 

  42. Beyer H, Jenne H, John HB, Niedenzu K (1964) Boron-nitrogen chemistry. American Chemical Society, Washington, DC

    Google Scholar 

  43. Parker JK, Davis SR (1997) Ab initio study of the relative energies and properties of fluoroborazines. J Phys Chem A 101:9410–9414

    Article  CAS  Google Scholar 

  44. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Hommes NJRVE (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  45. Corminboeuf C, Heine T, Seifert G, Schleyer PVR, Weber J (2004) Induced magnetic fields in aromatic [n]-annulenes-interpretation of NICS tensor components. Phys Chem Chem Phys 6:273–276

    Article  CAS  Google Scholar 

  46. Niedenzu K, Sawodny W, Watanabe H, Dawson JW, Totani T, Weber W (1967) The vibrational spectrum of borazine. Inorg Chem 6:1453–1461

    Article  CAS  Google Scholar 

  47. Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218–8224

    Article  CAS  Google Scholar 

  48. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473

    Article  CAS  Google Scholar 

  49. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  50. Ghiasi R, Manoochehri M, Reihaneh L (2016) DFT and TD-DFT study of benzene and borazines containing chromophores for DSSC materials. Russ J Inorg Chem 61:1267–1273

    Article  CAS  Google Scholar 

  51. Pearson RG (2005) Chemical hardness and density functional theory. J Chem Sci 117:369–377

    Article  CAS  Google Scholar 

  52. Dewar MJS (1971) Aromaticity and pericyclic reactions. Angew Chem Int Ed 10:761–870

    Article  CAS  Google Scholar 

  53. Willner I, Rabinovitz M (1980) Cycloocta[def]fluorene: a planar cyclooctatetraene derivative. Paratropicity of hydrocarbon and anion. J Org Chem 45:1628–1633

    Article  CAS  Google Scholar 

  54. Minsky A, Meyer AY, Rabinovitz M (1985) Paratropicity and antiaromaticity: role of the homo-lumo energy gap. Tetrahedron 41:785–791

    Article  CAS  Google Scholar 

  55. Cohen Y, Roelofs NH, Reinhard G, Scott LT, Rabinovitz M (1987) Novel carbocyclic dianions: NMR study of charge delocalization, paratropicity, and structure in the dianions of acephenanthrylene and aceanthrylene. J Org Chem 52:4207–4214

    Article  CAS  Google Scholar 

  56. Budzelaar PHM, Cremer D, Wallasch M, Wurthwein EU, Schleyer PVR (1987) Dioxetenes and diazetines: nonaromatic 6π-systems in four-membered rings. J Am Chem Soc 109:6290–6299

    Article  CAS  Google Scholar 

  57. Esrafili MD (2013) Nitrogen-doped (6, 0) carbon nanotubes: a comparative DFT study based on surface reactivity descriptors. Comput Theor Chem 1015:1–7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by CAPES, FINEP, CNPq, and FAPEMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaldyr de Jesus Gomes Jr.

Electronic supplementary material

Supplementary data associated with this article can be found in the online version at: https://link.springer.com/journal/214

ESM 1

(DOCX 1143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, A., Costa, E.R., Silva, A.L.P. et al. Theoretical study of the effects of substituents (F, Cl, Br, CH3, and CN) on the aromaticity of borazine. J Mol Model 24, 34 (2018). https://doi.org/10.1007/s00894-017-3555-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3555-x

Keywords

Navigation