Skip to main content

Advertisement

Log in

Adsorption of Mn atom on pristine and defected graphene: a density functional theory study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The functionalization of graphene with transition metals is of great interest due to its wide range of applications, such as hydrogen storage, spintronics, information storage, etc. Due to its magnetic property adsorption of Mn atom on graphene has a high consequence on the electronic properties of graphene. The increase in size of the graphene sheet with hydrogen termination has a high impact on the transformation of electronic properties of the graphene sheet. Hence in this work, we investigate the size as well as change in structural and electronic properties of pristine/defective graphene sheets on adsorption of Mn atom using density functional theory methods. From the results obtained a higher adsorption energy value of 3.04 eV is found for Mn adatom on the defected graphene sheet than the pristine, 1.85 eV. It is subject to the coverage effect which decreases on increasing number of carbon atoms. Moreover, a decrease in energy gap is observed in pristine and defected graphene sheets with a high number of carbon atoms. The density of states illustrates the significant effect for hydrogen termination in the conduction band of the Mn adsorbed graphene sheet with low carbon atoms.

Mn adatom on graphene at different sites

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV et al. (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200. doi:10.1038/nature04233

    Article  CAS  Google Scholar 

  2. Karpan VM, Giovannetti G, Khomyakov PA et al. (2007) Graphite and graphene as perfect spin filters. Phys Rev Lett. doi:10.1103/PhysRevLett.99.176602

    Google Scholar 

  3. Li D, Müller MB, Gilje S et al. (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105. doi:10.1038/nnano.2007.451

    Article  CAS  Google Scholar 

  4. Geim AK (2009) Status and prospects. Science 324:1530–1534. doi:10.1126/science.1158877

    Article  CAS  Google Scholar 

  5. Castro Neto AH, Guinea F, Peres NMR et al. (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162. doi:10.1103/RevModPhys.81.109

    Article  CAS  Google Scholar 

  6. Meyer JC, Geim AK et al. (2007) The structure of suspended graphene sheets. Nature 446:60–63. doi:10.1038/nature05545

    Article  CAS  Google Scholar 

  7. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi:10.1038/nmat1849

    Article  CAS  Google Scholar 

  8. Hu L, Hu X, Wu X et al. (2010) Density functional calculation of transition metal adatom adsorption on graphene. Phys B Condens Matter 405:3337–3341. doi:10.1016/j.physb.2010.05.001

    Article  CAS  Google Scholar 

  9. Boukhvalov DW, Katsnelson MI (2008) Chemical functionalization of graphene with defects. Nano Lett 8:4374–4379. doi:10.1021/nl802234n

    Article  Google Scholar 

  10. Banhart F, Kotakoski J, Krasheninnikov AV (2011) Structural defects in graphene. ACS Nano 5:26–41. doi:10.1021/nn102598m

    Article  CAS  Google Scholar 

  11. Zhou Q, Tang Y, Wang C et al. (2014) Electronic and magnetic properties of transition-metal atoms absorbed on Stone-Wales defected graphene sheet: A theory study. Comput Mater Sci 81:348–352. doi:10.1016/j.commatsci.2013.08.032

    Article  CAS  Google Scholar 

  12. Murray JS, Shields ZP-I, Lane P, Macaveiu L, Bulat FA (2013) The average local ionization energy as a tool for identifying reactive sites on defect-containing model graphene systems. Mol Model 19:2825–2833. doi:10.1007/s00894-012-1693-8

    Article  CAS  Google Scholar 

  13. Krasheninnikov AV, Lehtinen PO, Foster AS, Pyykko P, Nieminen RM (2009) Embedding transition-metal atoms in graphene: Structure, bonding, and magnetism. Phys Rev Lett 102:2–5. doi:10.1103/PhysRevLett.102.126807

    Article  Google Scholar 

  14. Mao Y, Yuan J, Zhong J (2008) Density functional calculation of transition metal adatom adsorption on graphene. J Phys Condens Matter 20:115209. doi:10.1088/0953-8984/20/11/115209

    Article  Google Scholar 

  15. Santos EJG, Ayuela A, Sánchez-Portal D (2010) First-principles study of substitutional metal impurities in graphene: structural, electronic and magnetic properties. New J Phys 12:53012. doi:10.1088/1367-2630/12/5/053012

    Article  Google Scholar 

  16. Sahoo S, Gruner ME, Khanna SN, Entel P (2014) First-principles studies on graphene-supported transition metal clusters. J Chem Phys 141:74707. doi:10.1063/1.4893328

    Article  Google Scholar 

  17. Rigo VA, Miwa RH, Da Silva AJR, Fazzio A (2011) Mn dimers on graphene nanoribbons: An ab initio study. J Appl Phys. doi:10.1063/1.3553849

    Google Scholar 

  18. Haldar S, Kolář M, Sedlák R, Hobza P (2012) Adsorption of organic electron acceptors on graphene-like molecules: Quantum chemical and molecular mechanical study. J Phys Chem C 116:25328–25336. doi:10.1021/jp3071162

    Article  CAS  Google Scholar 

  19. Reddy CD, Ramasubramaniam A, Shenoy VB, Zhang YW (2009) Edge elastic properties of defect-free single-layer graphene sheets. Appl Phys Lett. doi:10.1063/1.3094878

    Google Scholar 

  20. Evans WJ, Hu L, Keblinski P (2010) Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination. Appl Phys Lett 96:1–4. doi:10.1063/1.3435465

    Article  Google Scholar 

  21. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  23. Banerjee S, Bhattacharyya D (2008) Electronic properties of nano-graphene sheets calculated using quantum chemical DFT. Comput Mater Sci 44:41–45. doi:10.1016/j.commatsci.2008.01.044

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JÁ Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian Inc, Wallingford

  25. Lu T (2014) Multiwfn 2.1, http://multiwfn.codeplex.com/.

  26. Skowron ST, Lebedeva IV, Popov AM, Bichoutskaia E (2015) Energetics of atomic scale structure changes in graphene. Chem Soc Rev 44:3143–3176. doi:10.1039/c4cs00499j

    Article  CAS  Google Scholar 

  27. Kim G, Jhi SH, Lim S, Park N (2009) Effect of vacancy defects in graphene on metal anchoring and hydrogen adsorption. Appl Phys Lett. doi:10.1063/1.3126450

    Google Scholar 

  28. Cretu O, Krasheninnikov AV, Rodríguez-Manzo JA, Sun L, Nieminen RM, Banhart F (2010) Migration and localization of metal atoms on strained graphene. Phys Rev Lett 105:1–4. doi:10.1103/PhysRevLett.105.196102

    Article  Google Scholar 

  29. Ji Z, Contreras-Torres FF, Jalbout AF, Ramírez-Treviño A (2013) Surface diffusion and coverage effect of Li atom on graphene as studied by several density functional theory methods. Appl Surf Sci 285:846–852. doi:10.1016/j.apsusc.2013.08.140

    Article  CAS  Google Scholar 

  30. Dinadayalane TC, Murray JS, Concha MC, Politzer P, Leszczynski J (2010) Reactivities of sites on (5,5) single-walled carbon nanotubes with and without a Stone-Wales defect. J Chem Theory Comput 6:1351–1357. doi:10.1021/ct900669t

  31. Nakada K, Ishii A (2007) DFT calculation for adatom adsorption on graphene. Graphene Simul 376. doi: 10.5772/20477

  32. Kheirabadi N (2016) Li-doped graphene for spintronic applications. RSC Adv 6:18156–18164. doi:10.1039/C5RA27922D

    Article  CAS  Google Scholar 

  33. Huang B, Yan QM, Li ZY, Duan WH (2009) Towards graphene nanoribbon-based electronics. Front Phys China 4:269–279. doi:10.1007/s11467-009-0029-3

    Article  Google Scholar 

  34. Rao CNR, Matte HSSR, Subrahmanyam KS (2013) Synthesis and selected properties of graphene and graphene mimics. Acc Chem Res 46:149–159. doi:10.1021/ar300033m

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SV acknowledges the Department of Science and Technology (DST-SERB), Government of India for the financial support in the form of a project under Grant SR/FTP/PS-115/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vijayakumar.

Additional information

Highlights

• Single penta-hepta defected sheet have Mn adsorption value nearer to Stone-Wales defected graphene sheet

• Defected graphene have high adsorption than the pristine graphene sheet in presence of hydrogen termination.

• Mn atom adsorption is high in the higher length of defected graphene sheet while the adsorption in both pristine and defected graphene with lower length is hindered by the hydrogen termination.

• Influence of the coverage effect on Mn adsorption is observed in both pristine and defected graphene sheet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anithaa, V.S., Shankar, R. & Vijayakumar, S. Adsorption of Mn atom on pristine and defected graphene: a density functional theory study. J Mol Model 23, 132 (2017). https://doi.org/10.1007/s00894-017-3300-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3300-5

Keywords

Navigation