Skip to main content
Log in

Calculations of hyperfine coupling constant of copper(II) in aqueous environment. Finite temperature molecular dynamics and relativistic effects

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The presented paper is focused on the calculation of hyperfine coupling constants (HFCC) of Cu 2+ ion in water environment. To simulate the conditions of the electron paramagnetic resonance (EPR) experiment in aqueous phase, molecular dynamics using the density functional theory (DFT) was employed. In total three different functionals (BLYP, B3LYP, M06) were employed for studying their suitability in describing coordination of Cu 2+ by water molecules. The system of our interest was composed of one Cu 2+ cation surrounded by a selected number (between thirty and fifty) of water molecules. Besides the non-relativistic HFCCs (Fermi contact terms) of Cu 2+ also the four-component relativistic HFCC calculations are presented. The importance of the proper evaluation of HFCCs, the inclusion of spin-orbit term, for Cu 2+ containing systems (Neese, J. Chem. Phys. 118, 3939 2003; Almeida et al., Chem. Phys. 332, 176 2007) is confirmed at the relativistic four-component level of theory.

Five and six coordinated copper dication is solvated by adding extra water molecules to simulate conditions in aqueous solution. Molecular dynamics study is performed and nonrelativistic and relativistic hyperfine coupling constants are calculated subsequently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lippard SJ, Berg JM (1994) Principles of Bioinorganic Chemistry. University Science Books, Mill Valley

    Google Scholar 

  2. Bertini I, Gray HB, Stiefel EI, Valentine JS (2007) Biological Inorganic Chemistry. University Science Books, Mill Valley

    Google Scholar 

  3. Falconi M, Iacovelli F, Desideri A (2013) J Mol Model 19:3695

    Article  CAS  Google Scholar 

  4. Boča R, Hvastijová M, Kožíšek J, Valko M (1996) Inorg Chem 35:4794

    Article  Google Scholar 

  5. Jia LF, Fu WF, Yu MM, Cao QY, Zhang JF, Yin Q (2005) Inorg Chem Commun 8:647

    Article  CAS  Google Scholar 

  6. Bérces A, Nukada T, Margl P, Ziegler T (1997) J Mol Struct 397:121

    Article  Google Scholar 

  7. Stace AJ, Walker NR, Firth S (1997) J Am Chem Soc 119:10239

    Article  CAS  Google Scholar 

  8. Allen FH (2002). Acta Cryst B 58:380

    Article  Google Scholar 

  9. Conquest v1.17, csd v5.36 (nov 2014) Copyright CCDC 2014

  10. Frank P, Benfatto M, Szilagyi RK, D’Angelo P, Longa SD, Hodgson KO (2005) Inorg Chem 44:1922

    Article  CAS  Google Scholar 

  11. Benfatto M, D’Angelo P, Della Longa S, Pavel NV (2002) Phys Rev B 65:174205

    Article  Google Scholar 

  12. Persson I, Persson P, Sandström M, Ullström AS (2002) J Chem Soc Dalton Trans 7:1256

    Article  Google Scholar 

  13. Pasquarello A, Petri I, Salmon PS, Parisel O, Car R, Tóth E, Powell DH, Fischer HE, Helm L, Merbach AE (2001) Science 291:856

    Article  CAS  Google Scholar 

  14. Chaboy J, Muñoz-Páez A, Merkling PJ, Marcos ES (2006) J Chem Phys 124:064509

    Article  Google Scholar 

  15. Breza M, Biskupič S, Kožíšek J (1997) J Mol Struct 397:121

    Article  CAS  Google Scholar 

  16. Car R, Parrinello M (1985) Phys Rev Lett 55:2471

    Article  CAS  Google Scholar 

  17. Laasonen K, Pasquarello A, Car R, Lee C, Vanderbilt D (1993) Phys Rev B 47:10142

    Article  CAS  Google Scholar 

  18. Amira S, Spȧngberg D, Hermansson K (2005) Phys Chem Chem Phys 7:2874

    Article  CAS  Google Scholar 

  19. Texler NR, Rode BM (1995) J Phys Chem 99:15714

    Article  CAS  Google Scholar 

  20. Marini GW, Liedl KR, Rode BM (1999) J Phys Chem A 103:11387

    Article  CAS  Google Scholar 

  21. Schwenk CF, Rode BM (2003) J Chem Phys 119:9523

    Article  CAS  Google Scholar 

  22. Schwenk CF, Rode BM (2003) Comp Phys Commun 4:931

    Google Scholar 

  23. Moin ST, Hofer TS, Weiss AKH, Rode BM (2013) J Chem Phys 139:014503

    Article  Google Scholar 

  24. Blumberger J, Bernasconi L, Tavernelli I, Vuilleumier R, Sprik M (2004) J Am Chem Soc 126:3928

    Article  CAS  Google Scholar 

  25. de Almeida KJ, Murugan NA, Rinkevicius Z, Hugosson HW, Vahtras O, Ågren H, Cesar A (2009) Phys Chem Chem Phys 11:508

    Article  CAS  Google Scholar 

  26. de Almeida KJ, Rinkevicius Z, Hugosson HW, Ferreira AC, Ågren H (2007) Chem Phys 332:176

    Article  CAS  Google Scholar 

  27. Lewis WB, Alei JM, Morgan LO (1966) J Chem Phys 44:2409

    Article  Google Scholar 

  28. Rinkevicius Z, Telyatnyk L, Sałek P, Vahtras O, Ågren H (2004) J Chem Phys 121:7614

    Article  CAS  Google Scholar 

  29. Neese F (2003) J Chem Phys 118:3939

    Article  CAS  Google Scholar 

  30. Alder BJ, Wainwright TE (1957) J Chem Phys 27:1208

    Article  CAS  Google Scholar 

  31. Kutzelnigg W (2002) Chapter 12. Perturbation theory of relativistic effects in Relativistic Electronic Structure Theory. Part I. Fundamentals. Elsevier, Amsterdam, p 664

    Google Scholar 

  32. Pyykkö P (1971) Phys Lett A 35:53

    Article  Google Scholar 

  33. Komorovský S, Repiský M, Malkina OL, Malkin VG, Ondík IM, Kaupp M (2008) J Chem Phys 128:104101

    Article  Google Scholar 

  34. Repiský M, Komorovský S, Malkin E, Malkina OL, Malkin VG (2010) Chem Phys Lett 488:94

    Article  Google Scholar 

  35. Malkin E, Repiský M, Komorovský S, Mach P, Malkina OL, Malkin VG (2011) J Chem Phys 134:044111

    Article  Google Scholar 

  36. Malkin V, Malkina O, Reviakine R, Arbuznikov A, Kaupp M, Schimmelpfennig B, Malkin I, Repiský M, Komorovský S, Hrobarik P, Malkin E, Helgaker T, Ruud K (2012) ReSpect Program. Version 3.2.0, 2012

  37. Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785

    Article  CAS  Google Scholar 

  38. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  39. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  40. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  41. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  42. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  Google Scholar 

  43. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  44. Rassolov VA, Pople JA, Ratner MA, Windus TL (1998) J Chem Phys 109:1223

    Article  CAS  Google Scholar 

  45. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  46. Wachters AJH (1970) J Chem Phys 52:1033

    Article  CAS  Google Scholar 

  47. Dunning JTH (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  48. Balabanov NB, Peterson KA (2006) J Chem Phys 125:074110

    Article  Google Scholar 

  49. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117

    Article  CAS  Google Scholar 

  50. Barone V, Cossi M, Tomassi J (1997) J Chem Phys 107:3210

    Article  CAS  Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian.09 Revision D.01. Gaussian Inc., Wallingford CT

    Google Scholar 

  52. Berendsen HJC, van der Spoel D, van Drunen R (1995) Comp Phys Commun 91:43

    Article  CAS  Google Scholar 

  53. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) Comp Phys Commun 181:1477

    Article  CAS  Google Scholar 

  54. Berendsen HJC, Postma JPM, van Gunsteren WF, Nola AD, Haak JR (1984) J Chem Phys 81:3684

    Article  CAS  Google Scholar 

  55. Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799

    Article  Google Scholar 

  56. Visscher L, Dyall KG (1997) Atom Data Nucl Data Tabl 67:207

    Article  CAS  Google Scholar 

  57. Allen MP, Tildeslay DJ (1987) Computer Simulation of Liquids. Clarendon Press, Oxford

    Google Scholar 

Download references

Acknowledgments

First of all, we are very grateful for help, valuable discussions and know-how (via providing the ReSpect code) to Vladimír G. Malkin, Oľga L. Malkina (Slovak Academy of Science) and Michal Repiský (University of Tromsø). The financial support was obtained from APVV (contract No. APVV-0202-10) and VEGA (contracts No. 1/0327/12 and 1/0765/14). We are grateful to the HPC center at the Slovak University of Technology in Bratislava, which is a part of the Slovak Infrastructure of High Performance Computing (SIVVP project, ITMS code 26230120002, funded by the European region development funds) for the computational time and resources made available.

Conflict of interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Malček.

Additional information

Supplementary material

Supplementary material contains complete set of geometries from all the 300 K MDSs in the form of xyz files.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(ZIP 109 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malček, M., Bučinský, L., Valko, M. et al. Calculations of hyperfine coupling constant of copper(II) in aqueous environment. Finite temperature molecular dynamics and relativistic effects. J Mol Model 21, 237 (2015). https://doi.org/10.1007/s00894-015-2752-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2752-8

Keywords

Navigation