Skip to main content
Log in

Investigations of the EPR parameters for Cu2+ in [Cu(ipt)(dap)H2O] n nH2O

  • Structure and Properties of Coordination Compounds
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The electron paramagnetic resonance (EPR) parameters (g factors and hyperfine structure constants) for Cu2+ in [Cu(ipt)(dap)H2O] n nH2O (ipt is isophthalic acid, dap–1,3-diaminopropane) are theoretically investigated from the high order perturbation formulas of these parameters for a 3d 9 ion in a rhombically elongated octahedron. The ligand orbital and spin-orbit coupling contributions are included from the cluster approach because of strong covalency of the system. The nearly axial anisotropies of the g factors and hyperfine structure constants are correlated to the significant elongation distortion of the five-fold coordinated Cu2+ (in a distorted square pyramidal [CuN2O3] group). Nevertheless, the perpendicular anisotropies arising from the nonequivalent planar ligands are largely concealed by the experimental uncertainties. The theoretical analysis of the EPR behaviours for [Cu(ipt)(dap)H2O] n nH2O would be helpful to understand the local structures and properties of this and relevant systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. N. R. Rao, S. Natarajan, and R. Vaidyanathan, Angew. Chem., Int. Ed., 43, 1466–1496 (2004).

    Article  CAS  Google Scholar 

  2. L. Pan, B. Parker, X. Y. Huang, D. H. Olson, J. Y. Lee, and J. Li, J. Am. Chem. Soc., 128, 4180/4181 (2006).

    Google Scholar 

  3. L. Pan, D. H. Olson, L. R. Ciemnolonski, R. Heddy, and J. Li, Angew. Chem., 45, 616–619 (2006).

    Article  CAS  Google Scholar 

  4. M. Padmanabhan, S. Meenakumary, X. Huang, and J. Li, Inorg. Chim. Acta, 358, 3537–3544 (2005).

    Article  CAS  Google Scholar 

  5. X. M. Zhang, M. L. Tong, and X. M. Chen, Angew. Chem., Int. Ed., 41, 1029–1031 (2002).

    Article  CAS  Google Scholar 

  6. C. J. Kepert and M. J. Rosseinsky, Chem. Commun., 31/32 (1998).

    Google Scholar 

  7. P. J. Stang and B. Olenyuk, Acc. Chem. Res., 30, 502–518 (1997).

    Article  CAS  Google Scholar 

  8. S. Leininger, B. Olenyuk, and P. J. Stang, Chem. Rev., 100, 853–908 (2000).

    Article  CAS  Google Scholar 

  9. G. F. Swiegers and T. J. Malefetse, Chem. Rev., 100, 3483–3538 (2000).

    Article  CAS  Google Scholar 

  10. C. T. Chen and K. S. Suslick, Coord. Chem. Rev., 128, 293–322 (1993).

    Article  CAS  Google Scholar 

  11. N. L. Rosi, M. Eddaoudi, J. Kim, M. O’Keeffe, and O. M. Yaghi, Angew. Chem., Int. Ed., 41, 284–287 (2002).

    Article  CAS  Google Scholar 

  12. Y. Cui, O. R. Evans, H. L. Ngo, P. S. White, and W. B. Lin, Angew. Chem., Int. Ed., 41, 1159–1162 (2002).

    Article  CAS  Google Scholar 

  13. C. N. R. Rao and W. Jones, Supramolecular Organization and Materials Design, University Press, Cambridge (2002).

    Google Scholar 

  14. M. Padmanabhan, K. C. Joseph, A. Thirumurugan, X. Y. Huang, T. J. Emge, and J. Li, Inorg. Chim. Acta., 360, 2583–2588 (2007).

    Article  CAS  Google Scholar 

  15. A. Abragam and M. H. I. Pryce, Proc. R. Soc. A, 206, 164–172 (1951).

    Article  CAS  Google Scholar 

  16. T. C. Ensign, T. T. Chang, and A. H. Kahn, Phys. Rev., 188, 703–709 (1969).

    Article  CAS  Google Scholar 

  17. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, London (1986).

    Google Scholar 

  18. H. N. Dong, Z. Naturforsch. A, 60, 615–618 (2005).

    CAS  Google Scholar 

  19. H. M. Zhang, S. Y. Wu, M. Q. Kuang, and Z. H. Zhang, J. Phys. Chem. Solids, 73, 846–850 (2012).

    Article  CAS  Google Scholar 

  20. Y. X. Hu, S. Y. Wu, and X. F. Wang, Philos. Mag., 90, 1391–1400 (2010).

    Article  CAS  Google Scholar 

  21. D. J. Newman and B. Ng, Rep. Prog. Phys., 52, 699–763 (1989).

    Article  CAS  Google Scholar 

  22. C. Rudowicz, M. Karbowiak, P. Gnutek, and M. Lewandowska, J. Phys.: Condens. Matter, 26, 065501-1-15 (2014).

    Google Scholar 

  23. C. Rudowicz, P. Gnutek, S. Kimura, M. Açikgöz, and Y. Y. Yeung, Appl. Magn. Reson., 44, 899–915 (2013).

    Article  CAS  Google Scholar 

  24. C. Rudowicz, Z. Y. Yang, Y. Y. Yeung, and J. Qin, J. Phys. Chem. Solids, 64, 1419–1428 (2004).

    Article  Google Scholar 

  25. D. J. Newman, D. C. Pryce, and W. A. Runciman, Am. Mineral., 63, 1278–1281 (1978).

    CAS  Google Scholar 

  26. A. Edgar, J. Phys. C, 9, 4303–4314 (1976).

    Article  CAS  Google Scholar 

  27. H. N. Dong and W. D. Chen, Z. Naturforsch. A, 61, 83–86 (2006).

    CAS  Google Scholar 

  28. E. Clementi and D. L. Raimondi, J. Chem. Phys., 38, 2686–2689 (1963).

    Article  CAS  Google Scholar 

  29. E. Clementi, D. L. Raimondi, and W. P. Reinhardt, J. Chem. Phys., 47, 1300–1307 (1967).

    Article  CAS  Google Scholar 

  30. A. S. Chakravarty, Introduction to the Magnetic Properties of Solids, John Wiley & Sons, New York (1980).

    Google Scholar 

  31. J. S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, London (1964).

    Google Scholar 

  32. B. R. McGarvey, J. Phys. Chem., 71, 51–66 (1967).

    Article  CAS  Google Scholar 

  33. E. K. Hodgson and I. Fridovich, Biochem. Biophys. Res. Commun., 54, 270–274 (1973).

    Article  CAS  Google Scholar 

  34. D. W. Smith, J. Chem. Soc. A, 3108–3120 (1970).

    Google Scholar 

  35. R. W. Meulenberg, T. van Buuren, K. M. Hanif, T. M. Willey, G. F. Strouse, and L. J. Terminello, Nano Lett., 4, 2277–2285 (2004).

    Article  CAS  Google Scholar 

  36. S. Sambasivam, B. Sathyaseelan, R. D. Raja, B. K. Reddy, and C. K. Jayasankar, Spectrochim. Acta A, 71, 1503–1506 (2008).

    Article  CAS  Google Scholar 

  37. A. W. Addison, Spectroscopic and Redox Trends from Model Copper Complexes, in: Copper Coordination Chemistry: Biochemical and Inorganic Perspectives, K. D. Karlin and J. Zubieta (eds.), Adenine Press, New York (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-K. Cheng.

Additional information

Original Russian Text © 2015 Y.-K. Cheng, S.-Y. Wu, C.-C. Ding, G.-L. Li, M.-Q. Kuang.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 56, No. 8, pp. 1575-1580, December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, YK., Wu, SY., Ding, CC. et al. Investigations of the EPR parameters for Cu2+ in [Cu(ipt)(dap)H2O] n nH2O. J Struct Chem 56, 1514–1519 (2015). https://doi.org/10.1134/S0022476615080089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476615080089

Keywords

Navigation