Skip to main content
Log in

Topological insights into the 1/1 diacetyl/water complex gained using a new methodological approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The 1/1 diacetyl/water complex is of atmospheric relevance. Previous experimental and theoretical studies have focused on two isomeric forms, and geometry optimizations were carried out on them. Herein, we propose a six-step methodological approach based on topological properties to search for and characterize all of the isomeric forms of the 1/1 noncovalent diacetyl/water complex: (1) a molecular electrostatic potential (MESP) study to get an overview of the V min and V max regions on the molecular surfaces of the separate molecules (diacetyl and water); (2) a topological (QTAIM and ELF) study allowing thorough characterization of the electron densities (QTAIM) and irreducible ELF basins of the separate molecules; (3) full optimization of the predicted structures based on the interaction between complementary reaction sites; (4) energetic characterization based on a symmetry-adapted perturbation theory (SAPT) analysis; (5) topological characterization of the optimized complexes; (6) analysis of the complexes in terms of orbital overlaps (natural bond orbitals, NBO analysis). Using this approach, in addition to achieving the topological characterization of the two isomeric forms already reported, a third possible isomer was identified and characterized.

Topological tools to study monohydrated complexes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–b
Fig. 2a–b
Scheme 1A–B
Fig. 3
Fig. 4
Fig. 5
Fig. 6a–c
Fig. 7a–b
Fig. 8a–c
Fig. 9

Similar content being viewed by others

Notes

  1. For a discussion of how the energies of intramolecular hydrogen bonds can be estimated, see for example [14].

  2. See also [60].

  3. See the ESM at http://dx.doi.org/xxxxx to view the Cartesian coordinates of the monomers and the isomers S1, S2, and S3 of the 1/1 DAC/water complex optimized at both the MP2/AVTZ and CCSD(T)-F12/AVDZ levels of theory.

  4. We further investigated the reason for this particular location of the BCP, and an article is in preparation on this topic, in line with Shahbazian’s work. See for instance [6870].

References

  1. Philip D, Stoddart JF (1996) Angew Chem Int Ed 35:1154

    Article  Google Scholar 

  2. Desiraju GR (2013) J Am Chem Soc 135:9952

    Article  CAS  Google Scholar 

  3. Hunter CA (2004) Angew Chem Int Ed 43:5310

    Article  CAS  Google Scholar 

  4. Hobza P, Müller-Dethlefs K (2009) Non-covalent interactions: Theory and experiments. RSC, Cambridge

  5. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, Oxford

    Google Scholar 

  6. Grabowski SJ (2006) Hydrogen bonding: new insights. Leszczynski J (ed) Challenges and advances in computational chemistry and physics, vol 3. Springer, Dordrecht

  7. Moore TS, Winmill TF (1912) J Chem Soc Trans 101:1635

    Article  CAS  Google Scholar 

  8. Pauling L (1939) The nature of the chemical bond. Cornell University Press, Ithaca

  9. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaeergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83:1619

    CAS  Google Scholar 

  10. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaeergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83:1637

    CAS  Google Scholar 

  11. Grabowski SJ (2001) J Phys Chem A 105:10739

    Article  CAS  Google Scholar 

  12. Rozas I (2007) Phys Chem Chem Phys 9:2782

    Article  CAS  Google Scholar 

  13. Hill JG, Legon AC (2015) Phys Chem Chem Phys 17:858

    Article  Google Scholar 

  14. Rusinska-Roszak D, Sowinski G (2014) J Chem Inf Model 54:1963

    Article  CAS  Google Scholar 

  15. Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887

    Article  CAS  Google Scholar 

  16. Moszynski R, Heijmen TGA, Jeziorski B (1996) Mol Phys 88:741

    CAS  Google Scholar 

  17. Misquitta AJ, Podeszwa R, Jeziorski B, Szalewicz K (2005) J Chem Phys 123:214103

    Article  Google Scholar 

  18. Scheiner S (2013) Int J Quant Chem 113:1609

    Article  CAS  Google Scholar 

  19. Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723

    Article  CAS  Google Scholar 

  20. Esrafili MD, Vakili M (2014) J Mol Model 20:2291

    Article  Google Scholar 

  21. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748

    Article  CAS  Google Scholar 

  22. Hennemann M, Murray JS, Politzer P, Riley KE, Clark T (2012) J Mol Model 18:2461

    Article  CAS  Google Scholar 

  23. Murray JS, Concha MC, Lane P, Hobza P, Politzer P (2008) J Mol Model 14:699

    Article  CAS  Google Scholar 

  24. Clark T (2013) WIREs Comput Mol Sci 3:13

    Article  CAS  Google Scholar 

  25. Grabowski SJ, Sokalski WA, Dyguda E, Leszczynski J (2006) J Phys Chem B 110:6444

    Article  CAS  Google Scholar 

  26. Grabowski SJ (2013) Chem Eur J 19:14600

    Article  CAS  Google Scholar 

  27. Politzer P, Murrray JS (2002) Theor Chem Acc 108:134

    Article  CAS  Google Scholar 

  28. Politzer P, Murray JS, Janjic GV, Zaric SD (2014) Crystals 4:12–31

  29. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) J Mol Model 18:541

    Article  CAS  Google Scholar 

  30. Hoja J, Sax AF, Szalewicz K (2014) Chem Eur J 20:2292

    Article  CAS  Google Scholar 

  31. Bader RF (1994) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

  32. Bader RFW (1998) J Phys Chem A 102:7314

    Article  CAS  Google Scholar 

  33. Mo Y (2012) J Phys Chem A 116:5240

    Article  CAS  Google Scholar 

  34. Becken AD, Edgecombe KE (1990) J Chem Phys 92:5397

    Article  Google Scholar 

  35. Silvi B, Savin A (1994) Nature 371:683

    Article  CAS  Google Scholar 

  36. Fuentealba P, Chamorro E, Santo JC (2006) Understanding and using the electron localization function. In: Toro-Labbé A (ed) Theoretical aspects of chemical reactivity. Elsevier, Amsterdam

  37. Savin A, Silvin B, Colonna F (1996) Can J Chem 74:1088

    Article  CAS  Google Scholar 

  38. Silvi B, Fourrén I, Alikhani ME (2005) Monatsh Chem 136:855

    Article  CAS  Google Scholar 

  39. Silvi B (2003) J Phys Chem A 107:3081

    Article  CAS  Google Scholar 

  40. Alikhani ME, Fuster F, Silvi B (2005) Struct Chem 16:203

    Article  CAS  Google Scholar 

  41. Fuster F, Silvi B (2000) Theor Chem Acc 104:13

    Article  CAS  Google Scholar 

  42. Fuster F, Grabowski SJ (2011) J Phys Chem A 115:10078

    Article  CAS  Google Scholar 

  43. Klöpffer W, Wagner BO (2008) Atmospheric degradation of organic substances: persistence, transport potential, spatial range. Wiley VCH, Weinheim

  44. Calvert JC, Mellouki A, Orlando JJ (2011) The mechanisms of atmospheric oxidation of the oxygenates. Oxford University Press, Oxford

  45. Vaida V (2009) J Phys Chem A 113:5

    Article  CAS  Google Scholar 

  46. Li YM, Francisco JS (2005) J Am Chem Soc 127:12144

    Article  CAS  Google Scholar 

  47. Buszek RJ, Francisco JS, Anglada JM (2011) Int Rev Phys Chem 30:335

    Article  CAS  Google Scholar 

  48. Klotz B, Graedler F, Sørensen S, Barnes I, Becker KH (2001) Int J Chem Kinet 33:9

    Article  CAS  Google Scholar 

  49. Aloisio S, Francisco JS (2000) Phys Chem Earth C 25:245

    Google Scholar 

  50. Mucha M, Mielke Z (2007) J Phys Chem A 111:2398

    Article  CAS  Google Scholar 

  51. Favero LB, Caminati W (2009) J Phys Chem A 113:14308

    Article  CAS  Google Scholar 

  52. Cirtog M, Alikhani ME, Madebène B, Soulard P, Asselin P, Tremblay B (2011) J Phys Chem A 115:6688

    Article  CAS  Google Scholar 

  53. Esrafili MD (2012) J Mol Model 18:5005

    Article  CAS  Google Scholar 

  54. Weinhold F, Klein RA (2012) Mol Phys 110:565

    Article  CAS  Google Scholar 

  55. Scheiner S, Adhikari U (2011) J Phys Chem A 115:11101

    Article  CAS  Google Scholar 

  56. Oliveira BG (2014) Struct Chem 25:745

    Article  CAS  Google Scholar 

  57. Grabowski SJ (2013) Theor Chem Acc 132:1347–1

    Article  Google Scholar 

  58. Bankiewicz B, Matczak P, Palusiak M (2012) J Phys Chem A 116:452

    Article  CAS  Google Scholar 

  59. Zhang Y, Hollman DS, Schaeffer HF III (2012) J Chem Phys 136:244305–1

    Article  Google Scholar 

  60. Wheatley RJ, Harvey AH (2009) J Chem Phys 131:154305–1

    Article  Google Scholar 

  61. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291

    Article  CAS  Google Scholar 

  62. Scheiner S (2013) Int J Quant Chem 113:1609

    Article  CAS  Google Scholar 

  63. Politzer P, Muray JS, Clark T (2013) Phys Chem Chem Phys 15:11178

    Article  CAS  Google Scholar 

  64. Kumar A, Gadre SR, Mohan N, Suresh CH (2014) J Phys Chem A 118:526

    Article  CAS  Google Scholar 

  65. Fuster F (1999) Caractérisation des sites réactifs à partir de l’analyse topologique de fonctions locales. Ph.D. thesis. Université Pierre et Marie Curie, Paris

  66. Adler TB, Knizia G, Werner H-J (2007) J Chem Phys 127:221106

    Article  Google Scholar 

  67. Noga J, Kedzuch S, Simunek J, Ten-No S (2008) J Chem Phys 128:174103

    Article  Google Scholar 

  68. Foroutan-Nejad C, Shahbazian S, Marek R (2014) Chem Eur J 20:10140

    Article  CAS  Google Scholar 

  69. Nasertayoob P, Shahbazian S (2008) Int J Quantum Chem 108:1477

    Article  CAS  Google Scholar 

  70. Shahbazian S (2013) Found Chem 15:287

    Article  CAS  Google Scholar 

  71. Grabowski SJ (2011) Chem Rev 111:2597

    Article  CAS  Google Scholar 

  72. Glendening ED, Landis CR, Weinhold F (2012) Natural bond orbital methods. WIREs Comput Mol Sci 2:1

  73. Weinhold F, Klein RA (2014) Chem Educ Res Pract 15:276

    Article  CAS  Google Scholar 

  74. Weinhold F, Landis CR (2001) Chem Educ Res Pract 2:91

    Article  CAS  Google Scholar 

  75. Werner H-J et al (2010) MOLPRO, version 2010.1, a package of ab initio programs. http://www.molpro.net

  76. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision D.01. Gaussian, Inc., Wallingford

  77. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  78. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  79. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  80. Frisch MJ, Popl JA, Binkley JS (1984) J Chem Phys 80:3265

    Article  CAS  Google Scholar 

  81. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) J Comput Chem 4:294

    Article  CAS  Google Scholar 

  82. Keith TA (2014) AIMAll (version 14.10.27). TK Gristmill Software, Overland Park. http://aim.tkgristmill.com

  83. Noury S, Krokidis X, Fuster F, Silvi B (1999) Comput Chem 23:597

    Article  CAS  Google Scholar 

  84. Glendening ED, Badenhoop JK, Reed AE (2001) NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Alikhani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dargent, D., Zins, E.L., Madebène, B. et al. Topological insights into the 1/1 diacetyl/water complex gained using a new methodological approach. J Mol Model 21, 214 (2015). https://doi.org/10.1007/s00894-015-2751-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2751-9

Keywords

Navigation