Skip to main content
Log in

Microsolvation and hydration enthalpies of CaS2O3(H2O) n (n = 0–19) and S2O3 2−(H2O) n (n = 0–16): an ab initio study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We studied microhydrated calcium thiosulfate and its ions at the restricted Hartree–Fock RHF/6-31G* level of theory. A semiempirical molecular dynamics search of progressively more hydrated species provided lowest-energy configurations that were then fully optimized and characterized as energy minima at the RHF/6-31G* level of theory. The first solvation shell of calcium thiosulfate contains 18 water molecules, while the first solvation shell of thiosulfate ion consists of 15 water molecules. QTAIM calculations show hydrogen bonding to sulfur. At 298.15 K, we estimate the total standard enthalpies of hydration for thiosulfate ion and calcium thiosulfate at infinite dilution as −301 kcal mol−1 and −335 kcal mol−1, respectively. The dissociation of hydrated calcium thiosulfate at infinite dilution is predicted to be an endothermic process with an enthalpy of 262 kcal mol−1. Based on some experimental data, the predominant form of calcium thiosulfate in solution is predicted to be the contact ion pair.

Hydrated calcium thiosulfate, showing the first solvation shell

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sullivan DM, Havlin JL (1992) Thiosulfate inhibition of urea hydrolysis in soils-tetrathionate as a urease inhibitor. Soil Sci Soc Am J 56:957–960. doi:10.2136/sssaj1992.03615995005600030045x

    Article  CAS  Google Scholar 

  2. Ohtaki H, Radnai T (1993) Structure and dynamics of hydrated ions. Chem Rev 93:1157–1204. doi:10.1021/cr00019a014

    Article  CAS  Google Scholar 

  3. Robertson WH, Johnson MA (2003) Molecular aspects of halide ion hydration: the cluster approach. Annu Rev Phys Chem 54:173–213. doi:10.1146/annurev.physchem.54.011002.103801

    Article  CAS  Google Scholar 

  4. Marcus Y (2009) Effect of ions on the structure of water: structure making and breaking. Chem Rev 109:1346–1370. doi:10.1021/cr8003

    Article  CAS  Google Scholar 

  5. Liu C-W, Wang F, Yang L, Li X-Z, Zheng W-J, Gao YQ (2014) Stable salt–water cluster structures reflect the delicate competition between ion–water and water–water interactions. J Phys Chem B 118:743–751. doi:10.1021/jp408439j

    Article  CAS  Google Scholar 

  6. Rohman N, Mahiuddin S (1997) Concentration and temperature dependence of ultrasonic velocity and isentropic compressibility in aqueous sodium nitrate and sodium thiosulfate solutions. J Chem Soc Faraday Trans 93:2053–2056. doi:10.1039/a700022g

    Article  CAS  Google Scholar 

  7. Afanas’ev VN, Tyunina EY (2004) Structural features of ion hydration in sodium nitrate and thiosulfate. Russ J Gen Chem 74:673–678

    Article  Google Scholar 

  8. Trinapakul M, Kritayakornupong C, Tongraar A, Vchirawongkwin V (2013) Active site of the solvated thiosulfate ion characterized by hydration structures and dynamics. Dalton Trans 42:10807–10817. doi:10.1039/c3dt50329a

  9. Nelson J, Nieuwenhuyzen M, Pál I, Town RM (2004) Dinegative tetrahedral oxoanion complexation; structural and solution phase observations. Dalton Trans 15:2303–2308. doi:10.1039/b401200c

    Article  Google Scholar 

  10. Steudel R, Steudel Y (2009) Microsolvation of thiosulfuric acid and its tautomeric anions [HSSO3] and [SSO2(OH)] studied by B3LYP-PCM and G3X(MP2) calculations. J Phys Chem A 113:9920–9933. doi:10.1021/jp905264c

  11. Rosas-García VM, Sáenz-Tavera IC, Rodríguez-Herrera VJ, Garza-Campos BR (2013) Microsolvation and hydration enthalpies of CaC2O4(H2O) n (n = 0–16) and C2O4 2−(H2O) n (n = 0–14): an ab initio study. J Mol Model 19:1459–1471. doi:10.1007/s00894-012-1707-6

  12. Hassinen T, Peräkylä M (2001) New energy terms for reduced protein models implemented in an off-lattice force field. J Comput Chem 22:1229–1242. doi:10.1002/jcc.1080

    Article  CAS  Google Scholar 

  13. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17. doi:10.1186/1758-2946-4-17

    Article  CAS  Google Scholar 

  14. Stewart JJP (2007) Optimization of parameters for semiempirical methods. V: Modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213. doi:10.1007/s00894-007-0233-4

  15. Stewart JJP (2012) MOPAC2012. Stewart Computational Chemistry, Colorado Springs. http://OpenMOPAC.net, last date of access 15th Jan 2015

  16. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363. doi:10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  17. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78. doi:10.1002/wcms.81

  18. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164. doi:10.1002/jcc.21224

    Article  Google Scholar 

  19. Jmol Development Team (2012) Jmol: a 3D molecular visualizer. http://www.jmol.org, last accessed 15 Jan 2015

  20. Persistence of Vision Pty. Ltd. (2004) Persistence of Vision raytracer (version 3.6). http://www.povray.org/download/, last accessed 15 Jan 2015

  21. GIMP Development Team (2009) GNU Image Manipulation Program (GIMP) v.2.6.7. http://www.gimp.org, last date of access 15th Jan 2015

  22. Kelly CP, Cramer CJ, Truhlar DG (2006) Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants. J Phys Chem A 110:2493–2499. doi:10.1021/jp055336f

    Article  CAS  Google Scholar 

  23. Tang E, Di Tommaso D, de Leeuw NH (2010) Accuracy of the microsolvation–continuum approach in computing the pK a and the free energies of formation of phosphate species in aqueous solution. Phys Chem Chem Phys 12:13804–13815. doi:10.1039/C0CP00175A

  24. Tian L, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  25. Xenides D, Randolf BR, Rode BM (2006) Hydrogen bonding in liquid water: an ab initio QM/MM MD simulation study. J Mol Liq 123:61–67. doi:10.1016/j.molliq.2005.06.002

    Article  CAS  Google Scholar 

  26. Desiraju GR (2011) A bond by any other name. Angew Chem Int Ed 50:52–59. doi:10.1002/anie.201002960

  27. Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, Oxford

  28. Ochterski JW (2000) Thermochemistry in Gaussian. http://www.gaussian.com/g_whitepap/thermo.htm, last accessed 15 Jan 2015

  29. Paniagua C, Mota Valeri F (2010) Dipòsit Digital de la UB. U. de Barcelona, Barcelona. http://diposit.ub.edu/dspace/handle/2445/13382, last accessed 15 Jan 2015

  30. Woon DE Jr, Dunning TH Jr (1995) The pronounced effect of microsolvation on diatomic alkali halides: ab initio modeling of MX(H2O) n (M = Li, Na; X = F, Cl; n = 1–3). J Am Chem Soc 117:1090–1097. doi:10.1021/ja00108a027

  31. Lane JR, Contreras-García J, Piquemal J-P, Miller BJ, Kjaergaard HG (2013) Are bond critical points really critical for hydrogen bonding? J Chem Theory Comput 9:3263–3266. doi:10.1021/ct400420r

    Article  CAS  Google Scholar 

  32. Elerman Y, Fuess H, Joswig W (1982) Hydrogen bonding in magnesium thiosulphate hexahydrate MgS2O3 ·6H2O. A neutron diffraction study. Acta Crystallogr B 38:1799–1801. doi:10.1107/S0567740882007225

  33. Manojlović-Muir LA (1975) A neutron diffraction study of barium thiosulphate monohydrate, BaS2O3 ·H2O. Acta Crystallogr B 31:135–139. doi:10.1107/S0567740875002245

  34. Llsensky GC, Levy HA (1978) Sodium thiosulfate pentahydrate: a redetermination by neutron diffraction. Acta Crystallogr B 34:1975–1977. doi:10.1107/S0567740878007116

  35. Platts JA, Howard ST, Bracke BRF (1996) Directionality of hydrogen bonds to sulfur and oxygen. J Am Chem Soc 118:2726–2733. doi:10.1021/ja952871s

    Article  CAS  Google Scholar 

  36. Dean JA (ed)(1985) Lange’s handbook of chemistry, 13th edn. McGraw-Hill, New York, pp 4–37, Table 4–4

  37. Gimblett FGR, Monk CB (1955) Spectrophotometric studies of electrolytic dissociation. Part 1. Some thiosulphates in water. Trans Faraday Soc 51:793–802. doi:10.1039/TF9555100793

Download references

Acknowledgments

The authors wish to acknowledge funding from Universidad Autónoma de Nuevo León through the PAICyT program (grants #CN067-09 and #CA1731-07), and from Facultad de Ciencias Químicas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor M. Rosas-García.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosas-García, V.M., Sáenz-Tavera, I. & Rojas-Unda, M. Microsolvation and hydration enthalpies of CaS2O3(H2O) n (n = 0–19) and S2O3 2−(H2O) n (n = 0–16): an ab initio study. J Mol Model 21, 98 (2015). https://doi.org/10.1007/s00894-015-2638-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2638-9

Keywords

Navigation