Skip to main content
Log in

Validity of Rigid-Band Approximation in the Study of Thermoelectric Properties of p-Type FeNbSb-Based Half-Heusler Compounds

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Recently, we calculated the thermoelectric properties of p-type FeNbSb half-Heusler compounds by employing the rigid-band approximation (RBA) (Fang et al., RSC Adv 6:10507–10512, 2016). Traditionally, the RBA is used to understand and guide doping in semiconductors. It is therefore important to verify its reliability. To this end, we have investigated the validity of the RBA in heavily doped p-type FeNbSb by calculating the electronic structure and Seebeck coefficient of pure and Ti-, Zr-, Hf-, and Ce-doped FeNbSb using ab initio calculations. The results confirm that Ti, Zr, and Hf doping at Nb site shows rigid-band-like behavior, unlike Ce doping, which changes the density of states. We also calculated the electrical transport properties of the doped systems, indicating that the power factor of Ce-doped FeNbSb is lower than those of Ti-, Zr-, and Hf-doped FeNbSb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  2. Y.Z. Pei, X.Y. Shi, A.D. LaLonde, H. Wang, L.D. Chen, and G.J. Snyder, Nature 473, 66 (2011).

    Article  Google Scholar 

  3. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).

    Article  Google Scholar 

  4. G.D. Mahan and J.O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996).

    Article  Google Scholar 

  5. C.M. Jaworski, B. Wiendlocha, V. Jovovic, and J.P. Heremans, Energy Environ. Sci. 4, 4155 (2011).

    Article  Google Scholar 

  6. C. Yu, T.J. Zhu, R.Z. Shi, Y. Zhang, X.B. Zhao, and J. He, Acta Mater. 57, 2757 (2009).

    Article  Google Scholar 

  7. H.H. Xie, H. Wang, Y.Z. Pei, C.G. Fu, X.H. Liu, G.J. Snyder, X.B. Zhao, and T.J. Zhu, Adv. Funct. Mater. 23, 5123 (2013).

    Article  Google Scholar 

  8. W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon, and T.M. Tritt, Nanomaterials 2, 379 (2012).

    Article  Google Scholar 

  9. S.R. Culp, J.W. Simonson, S.J. Poon, V. Ponnambalam, J. Edwards, and T.M. Tritt, Appl. Phys. Lett. 93, 022105 (2008).

    Article  Google Scholar 

  10. T. Wu, W. Jiang, X. Li, Y. Zhou, and L. Chen, J. Appl. Phys. 102, 103705 (2007).

    Article  Google Scholar 

  11. T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, Jpn. J. Appl. Phys. 46, L673 (2007).

    Article  Google Scholar 

  12. S.R. Culp, S.J. Poon, N. Hickman, T.M. Tritt, and J. Blumm, Appl. Phys. Lett. 88, 042106 (2006).

    Article  Google Scholar 

  13. S. Chen, K.C. Lukas, W. Liu, C.P. Opeil, G. Chen, and Z.F. Ren, Adv. Energy Mater. 3, 1210 (2013).

    Article  Google Scholar 

  14. M. Schwall and B. Balke, Phys. Chem. Chem. Phys. 15, 1868 (2013).

    Article  Google Scholar 

  15. C.G. Fu, S.Q. Bai, Y.T. Liu, Y.S. Tang, L.D. Chen, X.B. Zhao, and T.J. Zhu, Nat. Commun. 6, 8144 (2015).

    Article  Google Scholar 

  16. C.G. Fu, T.J. Zhu, Y.T. Liu, H.H. Xie, and X.B. Zhao, Energy Environ. Sci. 8, 216–220 (2015).

    Article  Google Scholar 

  17. G. Joshi, R. He, M. Engber, G. Samsonidze, T. Pantha, E. Dahal, K. Dahal, J. Yang, Y.C. Lan, B. Kozinsky, and Z.F. Ren, Energy Environ. Sci. 7, 4070 (2014).

    Article  Google Scholar 

  18. C.G. Fu, H.J. Wu, Y.T. Liu, J.Q. He, X.B. Zhao, and T.J. Zhu, Adv. Sci. 3, 1600035 (2016).

    Article  Google Scholar 

  19. T. Fang, S.Q. Zheng, H. Chen, H. Cheng, L.J. Wang, and P. Zhang, RSC Adv. 6, 10507–10512 (2016).

    Article  Google Scholar 

  20. J. Yang, H.M. Li, T. Wu, W.Q. Zhang, L.D. Chen, and J.H. Yang, Adv. Funct. Mater. 18, 2880 (2008).

    Article  Google Scholar 

  21. O.M. Abid, S. Menouer, A. Yakoubi, H. Khachai, S.B. Omran, G. Murtaza, D. Prakash, R. Khenata, and K.D. Verma, Superlattice Microstruct. 93, 171 (2016).

    Article  Google Scholar 

  22. S. Lee and S.D. Mahanti, Phys. Rev. B 85, 165149 (2012).

    Article  Google Scholar 

  23. D. Kasinathan, M. Wagner, K. Koepernik, R. Cardoso-Gil, Y. Grin, and H. Rosner, Phys. Rev. B 85, 035207 (2012).

    Article  Google Scholar 

  24. Y. Takagiwa, Y.Z. Pei, G. Pomrehn, and G.J. Snyder, APL Mater. 1, 011101 (2013).

    Article  Google Scholar 

  25. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  26. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  27. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  28. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  29. G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  30. G.P. Meisner, M.S. Torikachvili, K.N. Yang, M.B. Maple, and R.P. Guertin, J. Appl. Phys. 57, 3073 (1985).

    Article  Google Scholar 

  31. G.B. Martins, M.A. Pires, G.E. Barberis, C. Rettori, and M.S. Torikachvili, Phys. Rev. B 50, 14822 (1994).

    Article  Google Scholar 

  32. K. Nouneh, Ali.H. Reshak, S. Auluck, I.V. Kityk, R. Viennois, S. Benet, and S. Charar, J. Alloys Compd. 437, 39–46 (2007).

    Article  Google Scholar 

  33. L. Nordstrom and D.J. Singh, Phys. Rev. B 53, 1103 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqi Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 669 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, T., Zheng, S., Zhou, T. et al. Validity of Rigid-Band Approximation in the Study of Thermoelectric Properties of p-Type FeNbSb-Based Half-Heusler Compounds. J. Electron. Mater. 46, 3030–3035 (2017). https://doi.org/10.1007/s11664-016-5122-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5122-0

Keywords

Navigation