Skip to main content
Log in

Quantum chemical investigations aimed at modeling highly efficient zinc porphyrin dye sensitized solar cells

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Zinc tetraphenylporphyrin (ZnTPP) was modified by a push-pull strategy and then density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were performed for the resulting derivatives. The smallest HOMO–LUMO energy gaps were found in ZnTPP-6 and ZnTPP-7, which had nitro substituents and a conjugated chain, while the largest was observed for ZnTPP-5. The energy gaps of all of the systems designed in this work were smaller than that of ZnTPP. Clear intramolecular charge transfer was observed from donor to acceptor in ZnTPP-6 and ZnTPP-7, which had nitro groups at positions R8, R9, and R10, as well as in ZnTPP-3 and ZnTPP-4, which had cyano groups at those positions. The narrow band gaps (compared to that of ZnTPP) of these designed systems, where the LUMO is above the conduction band of TiO2 and the HOMO is below the redox couple, indicate that they are efficient sensitizers. The B bands of these newly designed derivatives, except for ZnTPP-5, are redshifted compared with the B band of ZnTPP.

The comprehensive intra charge transfer has been observed from highest occupied molecular orbitals to lowest unoccupied molecular orbitals. The LUMO of the designed systems lying above the conduction band of TiO2 and HOMO below the redox couple as well as the narrow band gap compared to ZnTPP showed that new designed materials would be efficient sensitizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. O’Regan B, Gratzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  2. Nazeeruddin MK, Angelis FD, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Gratzel M (2005) J Am Chem Soc 127:16835–16847

    Article  CAS  Google Scholar 

  3. Wang Q, Campbell WM, Bonfantani EE, Jolley KW, Officer DL, Walsh PJ, Gordon K, Humphry-Baker R, Nazeeruddin MK, Gratzel M (2005) J Phys Chem B 109:15397–15409

    Article  CAS  Google Scholar 

  4. Go Sun Solutions (2012) Website. http://gosunsolutions.com/home/content/view/46/2/

  5. Bai Y, Cao YM, Zhang J, Wang MK, Li RZ, Wang P, Zakeeruddin SM, Gratzel M (2008) Nature Mat 7:626–630

    Article  CAS  Google Scholar 

  6. Gao F, Wang Y, Shi D, Zhang J, Wang MK, Jing XY, Humphary-Baker R, Wang P, Zakeeruddin SM, Gratzel M (2008) J Am Chem Soc 130:10720–10728

    Article  CAS  Google Scholar 

  7. Tsai HH, Simpson MC (2002) Chem Phys Lett 353:111–118

    Article  CAS  Google Scholar 

  8. Walsh PJ, Gordon KC, Officer DL, Campbell WM (2006) J Mol Struct (THEOCHEM) 759:17–24

    Article  CAS  Google Scholar 

  9. Cleland DM, Gordon KC, Officer DL, Wagner P, Walsh PJ (2009) Spectrochim Acta Part A 74:931–935

    Article  Google Scholar 

  10. Duncan WR, Prezhdo OV (2007) Ann Rev Phys Chem 58:143–184

    Article  CAS  Google Scholar 

  11. Claessens CG, Hahn U, Torres T (2008) Chem Rec 8:75–97

    Article  CAS  Google Scholar 

  12. Milgrom LR (1997) The colours of life: an introduction to the chemistry of porphyrins and related compounds. Oxford University Press, Oxford

  13. Choi M-S, Yamazaki T, Yamazaki I, Aida T (2004) Angew Chem Int Ed 43:150–158

    Article  CAS  Google Scholar 

  14. Dong ZC, Guo XL, Wakayama Y, Hou JG (2006) Surf Rev Lett 13:143–147

    Article  CAS  Google Scholar 

  15. Campbell WM, Jolley KW, Wagner P, Wagner K, Walsh PJ, Gordon KC, Schmidt-Mende L, Nazeeruddin MK, Wang Q, Graetzel M, Officer DL (2007) J Phys Chem C 111:11760–11762

    Article  CAS  Google Scholar 

  16. Xiang N, Zhou W, Jiang S, Deng L, Liu Y, Tan Z, Zhao B, Shen P, Tan S (2011) Sol Energy Mater Sol Cells 95:1174–1181

    Article  CAS  Google Scholar 

  17. Angelis FD, Fntacci S, Selloni A (2008) Nanotechnology 19:424002

    Article  Google Scholar 

  18. Ito S, Zakeeruddin SM, Humphry-Baker R, Liska P, Charvet R, Comte P, Nazeeruddin MK, Péchy P, Takata M, Miura H, Uchida S, Grätzel M (2006) Adv Mater 18:1202–1205

    Article  CAS  Google Scholar 

  19. Gouterman M (1978) In: Dolphin D (ed) The porphyrins, vol 3. Academic, New York, pp 1–153

  20. Smith KM (1972) Porphyrins and metalloporphyrins. Elsevier, Amsterdam

  21. Strachan JP, Gentemann S, Seth J, Kalsbeck WA, Lindsey JS, Holten D, Bocian DF (1997) J Am Chem Soc 119:11191–11201

    Article  CAS  Google Scholar 

  22. Yang SI, Seth J, Balasubramanian T, Kim D, Lindsey JS, Holten D, Bocian DF (1999) J Am Chem Soc 121:4008–4018

    Article  CAS  Google Scholar 

  23. Frisch MJ et al (2009) Gaussian 09, revision A.1. Gaussian Inc., Wallingford

  24. Bhattacharjee CR, Das G, Purkayastha DD, Kanoo P, Mondal P (2011) J Coord Chem 64:2746–2760

    Article  CAS  Google Scholar 

  25. Tsai FC, Chang CC, Liu CL, Chen WC, Jenekhe SA (2005) Macromolecules 38:1958–1966

    Article  CAS  Google Scholar 

  26. Cao H, Ma J, Zhang G, Jiang Y (2005) Macromolecules 38:1123–1130

    Article  CAS  Google Scholar 

  27. Hutchison GR, Ratner MA, Marks TJ (2005) J Phys Chem B 109:3126–3138

    Article  CAS  Google Scholar 

  28. Hutchison GR, Ratner MA, Marks TJ (2005) J Am Chem Soc 127:2339–2350

    Article  CAS  Google Scholar 

  29. Salzner U, Lagowski JB, Pickup PG, Poirier RA (1998) Synth Met 96:177–189

    Article  CAS  Google Scholar 

  30. Salzner U (2001) Synth Met 119:215–216

    Article  CAS  Google Scholar 

  31. Delley B (2000) J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  32. Wu J, Hagelberg F (2011) J Phys Chem C 115:4571–4577

    Article  CAS  Google Scholar 

  33. Barone V, Hod O, Peralta JE, Scuseria GE (2011) Acc Chem Res 44:269–279

    Article  CAS  Google Scholar 

  34. Irfan A, Cui R, Zhang J, Nadeem M (2010) Aust J Chem 63:1–7

    Article  Google Scholar 

  35. Irfan A, Nadeem M, Athar M, Kanwal F, Zhang J (2011) Comput Theor Chem 968:8–11

    Article  CAS  Google Scholar 

  36. Irfan A, Al-Sehemi AG, Asiri AM (2012) J Mol Model. doi:10.1007/s00894-012-1372-9

  37. Irfan A, Al-Sehemi AG, Asiri AM, Nadeem M, Alamry KA (2011) Comput Theor Chem 977:9–12

    Article  CAS  Google Scholar 

  38. Wan L, Zhang YX, Qi DD, Jiang JH (2010) J Mol Graphics Modell 28:842–851

    Article  CAS  Google Scholar 

  39. Liu ZQ, Chen ZX, Jin BB, Zhang XX (2011) Vib Spectr 56:210–218

    Article  CAS  Google Scholar 

  40. Li L, Tang Q, Li H, Yang X, Hu W, Song Y, Shuai Z, Xu W, Liu Y, Zhu D (2007) Adv Mater 19:2613–2617

    Article  CAS  Google Scholar 

  41. Irfan A, Zhang J, Chang Y (2009) Chem Phys Lett 483:143–146

    Article  CAS  Google Scholar 

  42. Ma R, Guo P, Yang L, Guo L, Zeng Q, Liu G, Zhang X (2010) J Mol Struct (THEOCHEM) 942:131–136

    Article  CAS  Google Scholar 

  43. Byrn MP, Curtis CJ, Goldberg I, Hsiou Y, Khan SI, Sawin PA, Tendick SK, Strouse CE (1991) J Am Chem Soc 113:6549–6557

    Article  CAS  Google Scholar 

  44. Nemykin VN, Basu P (2001) Virtual molecular orbital description program (VMOdes). Department of Chemistry, Duquesne University, Pittsburgh

  45. Scheidt WR, Kastner ME, Hatano K (1978) Inorg Chem 17:706–710

    Article  CAS  Google Scholar 

  46. Golder AJ, Povey DC (1990) Acta Crystallogr C 46:1210–1212

    Google Scholar 

  47. Balanay MP, Kim DH (2008) Phys Chem Chem Phys 10:5121–5127

    Article  CAS  Google Scholar 

  48. Aihara JI (1999) J Phys Chem A 103:7487–7495

    Article  CAS  Google Scholar 

  49. Kaur I, Jia W, Kopreski RP, Selvarasah S, Dokmeci MR, Pramanik C, McGruer NE, Miller GP (2008) J Am Chem Soc 130:16274–16286

    Article  CAS  Google Scholar 

  50. De Oliveira MA, Duarte HA, Pernaut J-M, De Almeida WB (2000) J Phys Chem A 104:8256–8262

    Article  Google Scholar 

  51. do Couto PC, Guedes RC, Cabral BJC (2004) Braz J Phys 34:42–47

    Article  Google Scholar 

  52. Irfan A, Cui RH, Zhang JP, Hao LZ (2009) Chem Phys 364:39–45

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to King Khalid University for its support and for providing the facilities needed to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Irfan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irfan, A., Hina, N., Al-Sehemi, A.G. et al. Quantum chemical investigations aimed at modeling highly efficient zinc porphyrin dye sensitized solar cells. J Mol Model 18, 4199–4207 (2012). https://doi.org/10.1007/s00894-012-1421-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1421-4

Keywords

Navigation