Skip to main content
Log in

Conformational analysis of a polyconjugated protein-binding ligand by joint quantum chemistry and polarizable molecular mechanics. Addressing the issues of anisotropy, conjugation, polarization, and multipole transferability

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We investigate the conformational properties of a potent inhibitor of neuropilin-1, a protein involved in cancer processes and macular degeneration. This inhibitor consists of four aromatic/conjugated fragments: a benzimidazole, a methylbenzene, a carboxythiourea, and a benzene-linker dioxane, and these fragments are all linked together by conjugated bonds. The calculations use the SIBFA polarizable molecular mechanics procedure. Prior to docking simulations, it is essential to ensure that variations in the ligand conformational energy upon rotations around its six main-chain torsional bonds are correctly represented (as compared to high-level ab initio quantum chemistry, QC). This is done in two successive calibration stages and one validation stage. In the latter, the minima identified following independent stepwise variations of each of the six main-chain torsion angles are used as starting points for energy minimization of all the torsion angles simultaneously. Single-point QC calculations of the minimized structures are then done to compare their relative energies ΔE conf to the SIBFA ones. We compare three different methods of deriving the multipoles and polarizabilities of the central, most critical moiety of the inhibitor: carboxythiourea (CTU). The representation that gives the best agreement with QC is the one that includes the effects of the mutual polarization energy E pol between the amide and thioamide moieties. This again highlights the critical role of this contribution. The implications and perspectives of these findings are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–b
Fig. 2
Fig. 3
Fig. 4
Fig. 5a–n
Fig. 6
Fig. 7
Fig. 8
Fig. 9a–d
Fig. 10
Fig. 11
Fig. 12a–b
Fig. 13a–b
Fig. 14

Similar content being viewed by others

References

  1. Djordjevic S, Driscoll PC (2013) Drug Discov Today 18:44

    Article  Google Scholar 

  2. Allain B, Jarray R, Borriello L, Leforban B, Dufour S, Liu W, Pamonsinlapatham P, Bianco S, Larghero J, Hadj-Slimane R, Garbay C, Raynaud F, Lepelletier Y (2012) Cell Signal 24:214

    Article  CAS  Google Scholar 

  3. Van der Kooi CW, Jusino MA, Perman B, Neau DB, Bellamy HD, Leahy D (2007) J Proc Natl Acad Sci USA 104:6152

  4. Jarvis A, Allerston CK, Jia H, Herzog B, Garza-Garcia A, Winfield N, Ellard K, Aqil R, Lynch R, Chapman C, Hartzoulakis B, Nally J, Stewart M, Cheng L, Menon M, Tickner M, Djordjevic S, Driscoll PC, Zachary I, Selwood DL (2010) J Med Chem 53:2215

    Article  CAS  Google Scholar 

  5. Jain A (2003) J Med Chem 46:499

    Article  CAS  Google Scholar 

  6. Gresh N, Claverie P, Pullman A (1984) Theor Chim Acta 66:1

  7. Gresh N (1995) J Comput Chem 16:856

    Article  CAS  Google Scholar 

  8. Gresh N (2006) Curr Pharm Des 12:2121

    Article  CAS  Google Scholar 

  9. Gresh N, Cisneros GA, Darden TA, Piquemal J (2007) J Chem Theory Comput 3:1960

    Article  CAS  Google Scholar 

  10. Piquemal J-P, Chevreau H, Gresh N (2007) J Chem Theory Comput 3:824

    Article  CAS  Google Scholar 

  11. Silvi B, Savin A (1994) Nature 371:683

    Article  CAS  Google Scholar 

  12. Piquemal J-P, Pilme J, Parisel O, Gerard H, Fourre I, Berges J, Gourlaouen C, De La Lande A, Van Severen M-C, Silvi B (2008) Int J Quantum Chem 108:1951

    Article  CAS  Google Scholar 

  13. Chaudret R, Gresh N, Cisneros GA, Scemama A, Piquemal J-P (2013) Can J Chem 91:1

    Article  Google Scholar 

  14. Dunning TH (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  15. Feller D (1996) J Comput Chem 17:1571

    Article  CAS  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB et al. (2009) Gaussian 09, revision A.1. Gaussian, Inc., Wallingford

  17. Stevens WJ, Fink W (1987) Chem Phys Letts 139:15

    Article  CAS  Google Scholar 

  18. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  19. Stone A (1981) J Chem Phys Letts 83:233

    Article  CAS  Google Scholar 

  20. Stone AJ, Alderton M (1985) Mol Phys 56:1047

    Article  CAS  Google Scholar 

  21. Piquemal J-P, Gresh N, Giessner-Prettre C (2003) J Phys Chem A 107:10353

    Article  CAS  Google Scholar 

  22. Garmer DR, Stevens WJ (1989) J Phys Chem A 93:8263

    Article  CAS  Google Scholar 

  23. Gresh N, Kafafi SA, Truchon J-F, Salahub DR (2004) J Comput Chem 25:823

    Article  CAS  Google Scholar 

  24. Beachy MD, Chasman D, Murphy RB, Halgren TA, Friesner RA (1997) J Am Chem Soc 119:5908

    Article  CAS  Google Scholar 

  25. Evangelakis GA, Rizos JP, Lagaris IE, Demetropoulos IN (1987) Comput Phys Comm 46:401

    Article  Google Scholar 

  26. McInnes C (2007) Curr Op Chem Biol 11:494

    Article  CAS  Google Scholar 

  27. Cavasotto CN, Orry A (2007) J Curr Top Med Chem 7:1006

    Article  CAS  Google Scholar 

  28. Kroemer RT (2007) Curr Protein Pept Sci 8:312

    Article  CAS  Google Scholar 

  29. Irwin J (2008) J Comp-Aided Mol Des 22:193

    Article  CAS  Google Scholar 

  30. Sotriffer CA, Sanschagrin P, Matter H, Klebe G (2008) Proteins 73:395

    Article  CAS  Google Scholar 

  31. Gilson MK, Zhou HX (2007) Ann Rev Biophys Biomol Struct 36:21

    Article  CAS  Google Scholar 

  32. Schneider G (2010) Nat Rev Drug Discov 9:273

    Article  CAS  Google Scholar 

  33. Ren P, Ponder JW (2003) J Phys Chem B 107:5933

    Article  CAS  Google Scholar 

  34. Lee C, Yang W, Parr RG (1988) Phys Rev B37:785

    Article  Google Scholar 

  35. Becke A (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  36. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  37. Gloaguen E, de Courcy B, Piquemal J-P, Pilme J, Parisel O, Pollet R, Biswal HS, Piuzzi F, Tardivel B, Broquier M, Mons M (2010) J Am Chem Soc 132:11860

    Article  CAS  Google Scholar 

  38. van Mourik T (2008) J Chem Theory Comput 4:1610

    Article  Google Scholar 

  39. Head-Gordon M, Pople JA (1993) J Phys Chem 97:1147

    Article  CAS  Google Scholar 

  40. Head-Gordon M, Pople JA (1993) J Phys Chem 97:10250

    Article  CAS  Google Scholar 

  41. Meier RJ (1993) J Phys Chem 97:10248

    Article  CAS  Google Scholar 

  42. Meier RJ (2011) J Phys Chem 115:3604

    Article  CAS  Google Scholar 

  43. Klug R, Burcl R (2010) J Phys Chem A 114:6401

    Article  CAS  Google Scholar 

  44. Guo H, Gresh N, Roques BP, Salahub DR (2000) J Phys Chem B 104:9746

    Article  CAS  Google Scholar 

  45. Piquemal J-P, Chelli R, Procacci P, Gresh N (2007) J Phys Chem A 111:8170

    Article  CAS  Google Scholar 

  46. Zheng J, Yu T, Papajak E, Alecu IM, Mielke S, Truhlar DG (2011) Phys Chem Chem Phys 13:10885

    Article  CAS  Google Scholar 

  47. Tafipolsky M, Schmid R (2005) J Comput Chem 26:1579

    Article  CAS  Google Scholar 

  48. Rogalewicz F, Ohanessian G, Gresh N (2000) J Comput Chem 21:963

    Article  CAS  Google Scholar 

  49. Tiraboschi G, Fournié-Zaluski M-C, Roques B-P, Gresh N (2001) J Comput Chem 22:1038

    Article  CAS  Google Scholar 

  50. Gresh N, Shi GB (2004) J Comput Chem 25:160

    Article  CAS  Google Scholar 

  51. Antony J, Piquemal J-P, Gresh N (2005) J Comput Chem 26:1131

    Article  CAS  Google Scholar 

  52. Courcy B, Piquemal J-P, Garbay C, Gresh N (2010) J Am Chem Soc 132:3312

    Article  Google Scholar 

  53. Gresh N, Courcy B, Piquemal J-P, Foret J, Courtiol-Legourd, Salmon L (2011) J Phys Chem B 115:8304

    Article  CAS  Google Scholar 

  54. Jiao D, Golubkov PA, Darden TA, Ren P (2008) Proc Natl Acad Sci USA 105:6290

  55. Jiao D, Zhang JJ, Duke RE, Li GH, Schnieders MJ, Ren P (2009) J Comput Chem 30:1701

    Article  CAS  Google Scholar 

  56. Ren P, Wu C, Ponder JW (2011) J Chem Theory Comput 7:3027

    Article  Google Scholar 

  57. Zhang J, Yang W, Piquemal J-P, Ren P (2012) J Chem Theory Comput 8:1314

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank the Grand Equipement National de Calcul Intensif (GENCI): Institut du Developpement et des Ressources en Informatique Scientifique (IDRIS), Centre Informatique de l’Enseignement Superieur (CINES), France, project no. x2009-075009), and the Centre de Ressources Informatiques de Haute Normandie (CRIHAN, Rouen, France), project 1998053.

We wish to acknowledge a CIFRE grant allotted to Elodie Goldwaser in the course of her Ph.D. thesis.

We are pleased to thank Drs. Lucia Borriello and Pascal Dao for enriching discussions during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Philip Piquemal or Nohad Gresh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

S1

Intermolecular interaction energies (kcal/mol) of water with sites in CTU, with a range of interaction distances that are shorter than the equilibrium distance considered. The energy contributions are listed as pairs of rows: the first row corresponds to the RVS values and the second to the SIBFA ones. The distances given in the first row of results are in Å. (DOC 355 kb)

S2

Torsion angles (in degrees) of lig-47 in its energy-minimized conformations. (DOC 49 kb)

S3

Construction of CTU by assembling thioamide and amide fragments. Intermolecular interaction energies (kcal/mol) of water with sites in CTU are shown, with a range of distances that are shorter than equilibrium distance considered. The energy contributions are listed as pairs of rows: the first row corresponds to the RVS values and the second to the SIBFA ones. The distances given in the first row of results are in Å. (DOC 243 kb)

S4

Construction of CTU by assemblingsp 2 amine, thioaldehyde, and aldehyde fragments. Intermolecular interaction energies (kcal/mol) and the various contributions to those energies in the binding of a probe water molecule with sites in CTU. The energy contributions are listed as pairs of rows: the first row corresponds to the RVS values and the second to the SIBFA ones. Distances given in the first row of results are in Å. (DOC 60 kb)

S5

Construction of CTU by assemblingsp 2 amine, thioaldehyde, and aldehyde fragments. Variations in the conformational energy of lig-47 as functions of the torsion anglesφ1 andφ3–φ7 are shown. (DOC 383 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldwaser, E., de Courcy, B., Demange, L. et al. Conformational analysis of a polyconjugated protein-binding ligand by joint quantum chemistry and polarizable molecular mechanics. Addressing the issues of anisotropy, conjugation, polarization, and multipole transferability. J Mol Model 20, 2472 (2014). https://doi.org/10.1007/s00894-014-2472-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2472-5

Keywords

Navigation