Skip to main content
Log in

Core-dependent and ligand-dependent relativistic corrections to the nuclear magnetic shieldings in MH4−n Y n (n = 0–4; M = Si, Ge, Sn, and Y = H, F, Cl, Br, I) model compounds

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The nuclear magnetic shieldings of Si, Ge, and Sn in MH4−n Y n (M = Si, Ge, Sn; Y = F, Cl, Br, I and n = 1–4) molecular systems are highly influenced by the substitution of one or more hydrogens by heavy-halogen atoms. We applied the linear response elimination of small components (LRESC) formalism to calculate those shieldings and learn whether including only a few of the leading relativistic correction terms is sufficient to be able to quantitatively reproduce the full relativistic value. It was observed that the nuclear magnetic shieldings change as the number of heavy halogen substituents and their weights vary, and the pattern of σ(M) generally does not exhibit the normal halogen dependence (NHD) behavior that can be seen in similar molecular systems containing carbon atoms. We also analyzed each relativistic correction afforded by the LRESC method and split them in two: core-dependent and ligand-dependent contributions; we then looked for the electronic mechanisms involved in the different relativistic effects and in the total relativistic value. Based on this analysis, we were able to study the electronic mechanism involved in a recently proposed relativistic effect, the “heavy atom effect on vicinal heavy atom” (HAVHA), in more detail. We found that the main electronic mechanism is the spin–orbit or σ T(3)p correction, although other corrections such as σ S(1)p and σ S(3)p are also important. Finally, we analyzed proton magnetic shieldings and found that, for molecules containing Sn as the central atom, σ(H) decreases as the number of heavy halogen substituents (of the same type: either F, Cl, or Br) increases, albeit at different rates for different halogens. σ(H) only increase as the number of halogen substituents increases if the halogen is iodine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Edlund U, Lejon T, Pyykkö P, Venkatachalam TK, Buncel E (1987) J Am Chem Soc 109:5982

    Article  CAS  Google Scholar 

  2. Pyykkö P, Görling A, Rösch N (1987) Mol Phys 61:195

    Article  Google Scholar 

  3. Kaupp M, Malkina OL, Malkin VG, Pyykkö P (1998) Chem Eur J 4:118

    Article  CAS  Google Scholar 

  4. Melo JI, Ruiz deAzúa MC, Giribet CG, Aucar GA, Provasi PF (2004) J Chem Phys 121:6798

    Article  CAS  Google Scholar 

  5. Kaupp M (2004) Relativistic effects on NMR chemical shifts (Chapter 9). In: Schwerdtfeger P (ed) Relativistic electronic structure theory, part 2: applications. Elsevier, Amsterdam, pp 552–597

  6. Lantto P, Romero RH, Gomez SS, Aucar GA, Vaara J (2006) J Chem Phys 125:184113

    Article  Google Scholar 

  7. Vaara J (2007) Phys Chem Chem Phys 9:5399

    Article  CAS  Google Scholar 

  8. Maldonado AF, Aucar GA (2009) Phys Chem Chem Phys 11:5615

    Article  CAS  Google Scholar 

  9. Autschbach J, Zheng S (2009) Annu Rep NMR Spectrosc 67:1

    Article  CAS  Google Scholar 

  10. Kantola AM, Lantto P, Vaara J, Jokisaari J (2010) Phys Chem Chem Phys 12:2679

    Article  CAS  Google Scholar 

  11. Arcisauskaite V, Melo JI, Hemmingsen L, Sauer SPA (2011) J Chem Phys 135:044306

    Article  Google Scholar 

  12. Roukala J, Maldonado AF, Vaara J, Aucar GA, Lantto P (2011) Phys Chem Chem Phys 13:21016

    Article  CAS  Google Scholar 

  13. Melo JI, Maldonado AF, Aucar GA (2012) J Chem Phys 137:214319

    Article  Google Scholar 

  14. Melo JI, Maldonado AF, Aucar GA (2011) Theor Chem Accounts 129:483

    Article  CAS  Google Scholar 

  15. Melo JI, Ruiz deAzúa MC, Giribet CG, Aucar GA, Romero RH (2003) J Chem Phys 118:471

    Article  CAS  Google Scholar 

  16. Manninen P, Lantto P, Vaara J, Ruud K (2003) J Chem Phys 119:2623

    Article  CAS  Google Scholar 

  17. Manninen P, Ruud K, Lantto P, Vaara J (2005) J Chem Phys 122:114107

    Article  Google Scholar 

  18. Rodriguez-Fortez A, Alemany P, Ziegler T (1999) J Phys Chem A 103:8288

    Article  Google Scholar 

  19. Maldonado AF, Aucar GA (2014) J Phys Chem A. doi:10.1021/jp502543m

  20. Gomez SS, Maldonado AF, Aucar GA (2005) J Chem Phys 123:214108

    Article  Google Scholar 

  21. Visscher L, Enevoldsen T, Saue T, Jensen HJA, Oddershede J (1999) J Comput Chem 20:1262

    Article  CAS  Google Scholar 

  22. Jameson CJ (1998) Multinuclear NMR. Plenum, New York

  23. Kaupp M (2004) Interpretation of NMR chemical shifts (Chapter 18). In: Kaupp M, Bühl M, Malkin VG (eds) Calculation of NMR and EPR parameters: theory and applications. Wiley-VCH, Weinheim, pp 293–306

  24. Fukawa S, Hada M, Fukuda R, Tanaka S, Nakatsuji H (2001) J Comput Chem 22:528

    Article  CAS  Google Scholar 

  25. Aucar GA, Romero RH, Maldonado AF (2010) Int Rev Phys Chem 29:1

    Article  CAS  Google Scholar 

  26. Saue T, Visscher L, Bast R, Jensen HJA, Dyall KG, Ekstrom U, Eliav E, Enevoldsen T, Fleig T, Gomes ASP, Henriksson J, Iliaš M, Jacob CR, Knecht S, Nataraj HS, Norman P, Olsen J, Pernpointner M, Ruud K, Schimmelpfennig B, Sikkema J, Thorvaldsen A, Thyssen J, Villaume S, Yamamoto S (2010) DIRAC10. University of Southern Denmark, Odense. http://dirac.chem.sdu.dk

  27. Kagakkai NB (1984) Kagaku benran, 3rd edn. Maruzen, Tokyo, p 649

  28. Sadlej AJ (1991) Theor Chim Acta 79:123

    Article  CAS  Google Scholar 

  29. Maldonado AF, Gimenez CA, Aucar GA (2012) Chem Phys 395:75

    Article  CAS  Google Scholar 

  30. Maldonado AF, Gimenez CA, Aucar GA (2012) J Chem Phys 136:224110

    Article  Google Scholar 

  31. Aidas K, Angeli C, Bak KL, Bakken V, Bast R, Boman L, Christiansen O, Cimiraglia R, Coriani S, Dahle P, Dalskov EK, Ekström U, Enevoldsen T, Eriksen JJ, Ettenhuber P, Fernández B, Ferrighi L, Fliegl H, Frediani L, Hald K, Halkier A, Hättig C, Heiberg H, Helgaker T, Hennum AC, Hettema H, Hjertenæs E, Høst S, Høyvik I-M, Iozzi MF, Jansík B, Jensen HJA, Jonsson D, Jørgensen P, Kauczor J, Kirpekar S, Kjærgaard T, Klopper W, Knecht S, Kobayashi R, Koch H, Kongsted J, Krapp A, Kristensen K, Ligabue A, Lutnæs OB, Melo JI, Mikkelsen KV, Myhre RH, Neiss C, Nielsen CB, Norman P, Olsen J, Olsen JMH, Osted A, Packer MJ, Pawlowski F, Pedersen TB, Provasi PF, Reine S, Rinkevicius Z, Ruden TA, Ruud K, Rybkin VV, Sałek P, Samson CCM, Sánchez de Merás A, Saue T, Sauer SPA, Schimmelpfennig B, Sneskov K, Steindal AH, Sylvester-Hvid KO, Taylor PR, Teale AM, Tellgren EI, Tew DP, Thorvaldsen AJ, Thøgersen L, Vahtras O, Watson MA, Wilson DJD, Ziolkowski M, Ågren H (2013) The Dalton quantum chemistry program system. WIREs Comput Mol Sci 4:269–284. doi:10.1002/wcms.1172

  32. Kaneko H, Hada M, Nakajima T, Nakatsuji H (1996) Chem Phys Lett 261:1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from both the Argentinian National Agency for Promoting Science and Technology (FONCYT, PICT2012-1214) and Secretaría General de Ciencia y Técnica de la Universidad Nacional del Nordeste, SeCyT-UNNE (PI 17/12T001). J.I.M. gratefully acknowledges support from the Argentinian National Research Council for Science and Technology (CONICET, grant PIP 0369 and UBACYT W105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan I. Melo.

Additional information

This paper belongs to Topical Collection Brazilian Symposium of Theoretical Chemistry (SBQT2013)

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maldonado, A.F., Aucar, G.A. & Melo, J.I. Core-dependent and ligand-dependent relativistic corrections to the nuclear magnetic shieldings in MH4−n Y n (n = 0–4; M = Si, Ge, Sn, and Y = H, F, Cl, Br, I) model compounds. J Mol Model 20, 2417 (2014). https://doi.org/10.1007/s00894-014-2417-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2417-z

Keywords

Navigation