Skip to main content
Log in

Relativistic effects on the shielding of SnH2XY and PbH2XY (X, Y = F, Cl, Br and I) heavy atom–containing molecules

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The relativistic polarization propagator approach is one of the most reliable methods available today for the calculation of NMR spectroscopic parameters on heavy atom–containing molecules, though its implementation is still at RPA or FOPPA (first-order) level of approach. Two-component methods like the LR-ESC method make possible the analysis of the electronic origin of relativistic effects due to its splitting in several mechanisms which are (or not) sensitive to the molecular structure or the nature of the chemical environment of the atom under study. In this article we present the study of some nuclear magnetic shieldings on the heavy atom for the following systems: SnXH3 (X = H, F, Cl, Br, I), SnXYH2 (X, Y = F, Cl, Br, I) and PbXH3 (X = H, F, Br, I). Total LR-ESC calculations are confronted to benchmark RPA calculations and then analyzed in order to get the main trends and discuss the electronic origin of the shielding of two kinds of atoms involved in such systems: central and substituent atoms. The electronic origin of the heavy atom effects on vicinal heavy atoms (HAVHA), recently proposed, is analyzed. It is shown that the passive third-order Spin orbit mechanism does not explain the total pattern though is still the most important. There are two other mechanisms involved: the so called here PSO-OZ and the L-PSO-K. Both mechanisms do contain the PSO perturbative Hamiltonian (which also include kinetic energy correcting terms). In the case of \(\hbox{SnH}_2\hbox{I}_2\), the HAVHA effect on σ(Sn) is of the order of 16%. When the central atom is as heavy as Sn, the active SO contribution on the shielding of such atom becomes larger than the passive SO, which is small in this case. This would mean that the HALA-type effect is strongly diminished when applied on a vicinal heavy atom. Quite a similar pattern though with larger relativistic effects is observed for the central lead atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fukui H, Baba T, Inomata H (1996) J Chem Phys 105:3175–3187

    Article  CAS  Google Scholar 

  2. Fukui H, Baba T, Inomata H (1997) J Chem Phys 106:2987–2987

    Article  CAS  Google Scholar 

  3. Filatov M, Cremer D (2002) Theor Chem Acc 108:168–178

    CAS  Google Scholar 

  4. Filatov M, Cremer D (2003) J Chem Phys 119:701–703

    Article  CAS  Google Scholar 

  5. Gómez SS, Melo JI, Romero RH, Aucar GA, Ruizde Azúa MC (2005) J Chem Phys 122:64103–64110

    Article  Google Scholar 

  6. Melo JI, Ruizde Azúa MC, Giribet CG, Aucar GA, Romero RH (2003) J Chem Phys 118:471–487

    Article  CAS  Google Scholar 

  7. Manninen P, Lantto P, Vaara J, Ruud K (2003) J Chem Phys 119:2623–2638

    Article  CAS  Google Scholar 

  8. Vaara J, Pyykkö P (2003) J Chem Phys 118:2973–2977

    Article  CAS  Google Scholar 

  9. Fukuda R, Hada M, Nakatsuji H (2003) J Chem Phys 118:1015–1027

    Article  CAS  Google Scholar 

  10. Fukuda R, Hada M, Nakatsuji H (2003) J Chem Phys 118:1027–1036

    Article  CAS  Google Scholar 

  11. Yates JR, Pickard CJ, Payne MC, Mauri F (2003) J Chem Phys 118:5746–5754

    Article  CAS  Google Scholar 

  12. Kutzelnigg W (2003) Phys Rev A 67:32109–32121

    Article  Google Scholar 

  13. Visscher L (2005) Adv Quantum Chem 48(19)

  14. Manninen P, Ruud K, Lantto P, Vaara J (2005) J Chem Phys 122:114107–114115

    Article  Google Scholar 

  15. Komorovsky S, Repisky M, Malkina OL, Malkin VG, Malkin Ondik I, Kaupp M (2008) J Chem Phys 128:104101–104116

    Article  Google Scholar 

  16. Fukui H (2010) Bull Chem Soc Jpn 83:635–642

    Article  Google Scholar 

  17. Cheng L, Xiao Y, Liu W (2009) J Chem Phys 131:244113–244125

    Article  Google Scholar 

  18. Autschbach J, Ziegler T (2009). in Annual Rep. on NMR Spect Chapter 1

  19. Melo JI, Ruizde Azúa MC, Giribet CG, Aucar GA, Provasi PF (2004) J Chem Phys 121:6798–6809

    Article  CAS  Google Scholar 

  20. Aucar GA, Oddershede J (1993) Int J Quantum Chem 47:425–435

    Article  CAS  Google Scholar 

  21. Aucar GA, Saue T, Visscher L, Jensen HJA (1999) J Chem Phys 110:6208–6219

    Article  CAS  Google Scholar 

  22. Aucar GA (2008) Concepts Magn Reson Part A 32:88–116

    Google Scholar 

  23. Saue T, Bakken V, Enevoldsen T, Helgaker T, Jensen HJA, Laerdahl JK, Ruud K, Thyssen J, Visscher L (2004) DIRAC is a relativistic ab initio electronic structure program, Release 4.0, University of Southern Denmark, Odense, http://dirac.chem.sdu.dk

  24. Visscher L, Enevoldsen T, Saue T, Jensen HJA, Oddershede J (1999) J Comp Chem 20:1262–1273

    Article  CAS  Google Scholar 

  25. Maldonado AF, Aucar GA (2009) Phys Chem Chem Phys 11:5615–5627

    Article  CAS  Google Scholar 

  26. Aucar GA, Romero RH, Maldonado AF (2010) Int Rev Phys Chem 29:1–64

    Article  CAS  Google Scholar 

  27. Gómez SS, Maldonado AF, Aucar GA (2005) J Chem Phys 123:214108–214115

    Article  Google Scholar 

  28. Gómez SS, Romero RH, Aucar GA (2002) J Chem Phys 117:7942–7947

    Article  Google Scholar 

  29. Vaara J, Ruud K, Vahtras O, Ågren H (1998) J Chem Phys 111:2009–2900

    Google Scholar 

  30. Vaara J, Ruud K, Vahtras O (1999) J Chem Phys 109:1212–1222

    Article  Google Scholar 

  31. Maldonado AF, Aucar GA (2007) J Chem Phys 127:154115–154123

    Article  Google Scholar 

  32. Zaccari D, Melo JI, Ruizde Azúa MC, Giribet CG (2009) J Chem Phys 130:084102–084111

    Article  Google Scholar 

  33. Kaneko H, Hada M, Nakajima T, Nakatsuji H (1996) Chem Phys Lett 261:1–6

    Article  CAS  Google Scholar 

  34. Nakatsuji H, Ionue T, Nakao T (1992) J Phys Chem 96:7953–7958

    Article  CAS  Google Scholar 

  35. Jaszunski M, Ruud K (2006) Mol Phys 104:2139–2148

    Article  CAS  Google Scholar 

  36. Bagno A, Casella G, Saieli G (2006) J Chem Th Comp 2:37–46

    Article  CAS  Google Scholar 

  37. Pyykkö P, Görling A, Rösch N (1987) Mol Phys 61:195–205

    Article  Google Scholar 

  38. Kaupp M, Malkina OL, Malkin VG, Pyykkö P (1998) Chem Eur J 4:118–125

    Article  CAS  Google Scholar 

  39. Edlund U, Lejon T, Pyykkö P, Venkatachalam TK, Buncel E (1987) J Am Chem Soc 109:5982–5985

    Article  CAS  Google Scholar 

  40. Ruizde Azúa M, Melo JI, Giribet CG (2003) Mol Phys 101:3103–3109

    Article  Google Scholar 

  41. Gómez SS, Romero RH, Aucar GA (2003) Chem Phys Lett 367:265–269

    Article  Google Scholar 

  42. Lantto P, Gómez SS, Romero RH, Aucar GA, Vaara J (2006) J Chem Phys 125:184113–184126

    Article  Google Scholar 

  43. Kaupp M (2004) Relativistic effects on NMR chemical shifts, Chap 9. In: Schwerdtfeger P (ed) Relativistic electronic structure theory II applications. Elsevier, Amsterdam

    Google Scholar 

  44. DALTON, a molecular electronic structure program, Release 2.0 (2005), see http://www.kjemi.uio.no/software/dalton/dalton.html

  45. Sadlej AJ (1991) Theor Chim Acta 79:123–140

    Article  CAS  Google Scholar 

  46. Sadlej AJ (1991) Theor Chim Acta 81:45–63

    Article  CAS  Google Scholar 

  47. Sadlej AJ (1992) Theor Chim Acta 81:339–354

    Article  CAS  Google Scholar 

  48. Kellö V, Sadlej AJ (1992) Theor Chim Acta 83:351–366

    Article  Google Scholar 

  49. Faegri Jr K (private communication); see also http://folk.uio.no/knutf/bases/one and http://folk.uio.no/knutf/bases/one/Tl-Rn.2217138

  50. Provasi PF, Aucar GA, Sauer SPA (2000) J Chem Phys 112:6201–6208

    Article  CAS  Google Scholar 

Download references

Acknowledgments

GAA and JIM are fellows of the Argentinian National Research Council, CONICET, and AFM has a fellowship from CONICET. The authors gratefully acknowledge partial support from SGCyT-UNNE, the Argentinean Council for Science and Technology (CONICET, grant PIP 5119/2005) and the Argentinean Agency for Promotion of Science and Technology (FONCYT, grant PICT 21604/2004, and PAE 22592/2004). GAA greatly acknowledge the always inspiring discussions that have had during the last decades with Professor Pekka Pyykkö. Being in contact with him is a source of new challenges and proposals of exciting scientific work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo A. Aucar.

Additional information

Dedicated to Professor Pekka Pyykkö on the occasion of his 70th birthday and published as part of the Pyykkö Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (95 KB)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melo, J.I., Maldonado, A. & Aucar, G.A. Relativistic effects on the shielding of SnH2XY and PbH2XY (X, Y = F, Cl, Br and I) heavy atom–containing molecules. Theor Chem Acc 129, 483–494 (2011). https://doi.org/10.1007/s00214-010-0886-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0886-4

Keywords

Navigation