Skip to main content
Log in

Structural and electronic study of neutral, positive, and negative small rhodium clusters [Rhn, Rhn +, Rhn - ; n = 10-13]

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have carried out a systematic study for the determination of the structure and the fundamental state of neutral and ionic small rhodium clusters [Rhn, Rhn +, Rhn -; n = 10-13] using ab initio Hartree-Fock methods with a LANL2DZ basis set. A range of spin multiplicities is investigated for each cluster. We present the bond lengths, angles, and geometric configuration adopted by the clusters in its minimum energy conformation showing the differences when the clusters have different number of unpaired electrons. Also we report the vertical ionization potential and the adiabatic one calculated by the Koopmans’ theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. De Heer WA (1993) Rev Mod Phys 65:611

    Article  Google Scholar 

  2. Alonso JA (2000) Chem Rev 100:637

    Article  CAS  Google Scholar 

  3. Baletto F, Ferrando R (2005) Rev Mod Phys 77:371

    Article  CAS  Google Scholar 

  4. Cox AJ, Louderback JG, Apsel SE, Bloomfield LA (1993) Phys Rev Lett 71:923

    Article  CAS  Google Scholar 

  5. Reddy BV, Khanna SN, Dunlap BI (1993) Phys Rev Lett 70:3323

    Article  CAS  Google Scholar 

  6. Cox AJ, Louderback JG, Apsel SE, Bloomfield LA (1994) Phys Rev B 49:12295

    Article  CAS  Google Scholar 

  7. Knickelbein MB (2005) Phys Rev B 71:184442

    Article  Google Scholar 

  8. Jeon JT, Lee GH (2008) J Appl Phys 103:094313

    Article  Google Scholar 

  9. George Micheal W (2008) Commodity Report Platinum-Group Metals US. Geological Survey Mineral Commodity Sumaries

  10. Reddy BV, Nayak SK, Khanna SN, Rao BK, Jena P (1999) Phys Rev B 59:5214

    Article  CAS  Google Scholar 

  11. Kohn W, Sham LJ (1965) Phys Rev A 140:1133

    Article  Google Scholar 

  12. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  13. Langreth DC, Perdew JP (1980) Phys Rev B21:5469

    Article  Google Scholar 

  14. Langreth DC, Mehl MJ (1983) Phys Rev B28:1809

    Article  Google Scholar 

  15. Perdew JP, Wang Y (1986) Phys Rev B33:8800

    Article  Google Scholar 

  16. Perdew JP (1986) Phys Rev B33:8822

    Article  Google Scholar 

  17. Lee KZ (1997) Phys D At Mol Clusters 40:164

    Article  CAS  Google Scholar 

  18. Girardo-Lopez R, Spanjaard D, Desjonqueres MC, Aguilera-Granja FJ (1998) Magn Mater 186:214

    Article  Google Scholar 

  19. Guevara J, Llois AM, Agilera-Granja FJ, Montejuno-Carrizales JM (1999) Solid State Commun 111:335

    Article  CAS  Google Scholar 

  20. Jinlong Y, Toigo F, Kelin W (1994) Phys Rev B 50(11):7915

    Article  CAS  Google Scholar 

  21. Chien CH, Blainstein-Barojas E, Pederson MR (1998) Phys Rev A 58(3):2196

    Article  CAS  Google Scholar 

  22. Chang CM, Chou MY (2004) Phys Rev Lett 93(13):133401

    Article  CAS  Google Scholar 

  23. Bae YC, Osanai H, Kumar V, Kawasoe T (2004) Phys Rev B 70:195413

    Article  Google Scholar 

  24. Majumbar D, Balasubramanian K (1998) J Chem Phys 108:2495

    Article  Google Scholar 

  25. Mora MA, Mora-Ramirez MA, Rubio-Arroyo MF (2010) Int J Q Chem 110:2541

    CAS  Google Scholar 

  26. Harding DJ, Mackenzie SR, Walsh TR (2006) J Phys Chem B 110:18272

    Article  CAS  Google Scholar 

  27. Harding DJ, Walsh TR, Hamilton SM, Hopkins WS, Mackenzie SR, Haetelt M, Meijer G, Fielicke A (2010) J Phys Chem B 132:011101

    Article  CAS  Google Scholar 

  28. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    Article  CAS  Google Scholar 

  29. Wadt WR, Hay PJ (1985) J Chem Phys 82:284

    Article  CAS  Google Scholar 

  30. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  31. Pheng C, Schlegel HB (1994) J Chem 33:449

    Google Scholar 

  32. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) J Comp Chem 17:49

    Article  CAS  Google Scholar 

  33. Frisch MJ et al. (2004) Gaussian 03, Revision E.01. Gaussian Inc, Wallingford, CT

  34. Futscheck T, Marsman M, Hafner J (2005) J Phys Condens Matter 17:5929

    Google Scholar 

  35. Piotrowski MJ, Piquini P, Odashima M, Da Silva JLF (2011) J Chem Phys 134:134105

    Article  Google Scholar 

  36. Piotrowski MJ, Piquini P, Da Silva JLF (2010) Phys Rev B 81:155446

    Article  Google Scholar 

  37. Rogan J, Garcia G, Loyola C, Orellana W, Ramírez R, Kiwi MJ (2006) Chem Phys 125:214708

    Article  Google Scholar 

  38. Sun Y, Fournier R, Zhang M (2009) Phys Rev A 79:043202

    Article  Google Scholar 

  39. Lide DR (1995) Ed. Handbook of chemistry and physics, 76th edn. CRC, Boca Raton, FL

  40. Harding DJ, Gruene P, Haertelt M, Meijer G, Fielicke A, Hamilton SM, Hopkins WS, Mackenzie SR, Neville SP, Walsh TR (2010) J Chem Phys 133:214304

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mora.

Additional information

This paper belongs to Topical Collection QUITEL 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora, M.A., Mora-Ramirez, M.A. Structural and electronic study of neutral, positive, and negative small rhodium clusters [Rhn, Rhn +, Rhn - ; n = 10-13]. J Mol Model 20, 2299 (2014). https://doi.org/10.1007/s00894-014-2299-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2299-0

Keywords

Navigation