Skip to main content
Log in

2D-QSPR/DFT studies of aryl-substituted PNP-Cr-based catalyst systems for highly selective ethylene oligomerization

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

1-Hexene and 1-octene are important comonomers for the synthesis of high performance polyolefins. Recently, various N-substituted Cr-bis(diphenylphosphino)amine (PNP-Cr) catalysts show the potential as excellent candidates for highly selective ethylene trimerization/tetramerization. In this work, a series of aryl-substituted PNP-Cr catalysts were studied by two-dimensional quantitative structure–property relationship (QSPR) method based on density functional theory (DFT) calculations. The heuristic method (HM) and best multi-linear regression (BMLR) were used to establish the best linear regression models to describe the relationship between selectivities and catalyst structures. Both Cr(I) and Cr(II) active site models for ethylene trimerization/tetramerization were considered. It was found that 1) the relativity and stability of the models were increased by using self-defined descriptors based on DFT calculations; 2) Cr(I)/Cr(III) centers were the most plausible active sites for ethylene trimerization, while Cr(II)/Cr(IV) active sites were most possibly responsible for ethylene tetramerization; and 3) the skeleton structures of the PNP-Cr system with good complanation and symmetry were crucial for achieving excellent catalytic selectivity of 1-octene, while the PNP-Cr backbone with a large steric effect on N atom would benefit ethylene trimerization. Six new PNP ligands with high selectivity toward ethylene trimerization/tetramerization were predicted based on descriptor analysis and the best linear regression models providing a good basis for further development of novel catalyst systems with better performance.

Aryl-substituted PNP-Cr-based catalyst systems

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agape T (2011) Selective ethylene oligomerization: recent advances in chromium catalysis and mechanistic investigations. Coord Chem Rev 255:861–880

    Article  CAS  Google Scholar 

  2. van Leeuwen PWNM, Clément ND, Tschan MJL (2011) New processes for the selective production of 1-octene. Coord Chem Rev 255:1499–1517

    Article  CAS  Google Scholar 

  3. Dixon JT, Green MJ, Hess FM, Morgan DH (2004) Advances in selective ethylene trimerization—a critical overview. J Organomet Chem 689:3641–3668

    Article  CAS  Google Scholar 

  4. Belov GP (2012) Tetramerization of ethylene to octene-1 (a review). Pet Chem 52:139–154

    Article  CAS  Google Scholar 

  5. McGuinness DS (2011) Olefin oligomerization via metallacycles: dimerization, trimerization, tetramerization, and beyond. Chem Rev 111:2321–2341

    Article  CAS  Google Scholar 

  6. Manyik RM, Walker WE, Wilson TP (1977) Soluble chromium-based catalyst for ethylene trimerization and polymerization. J Catal 47:197–209

    Article  CAS  Google Scholar 

  7. Yang Y, Liu Z, Liu B, Duchateau R (2013) Selective ethylene tri-/tetramerization by in situ-formed chromium catalysts stabilized by N, P-based ancillary ligand systems. ACS Catal 30:2353–2361

    Article  CAS  Google Scholar 

  8. Carter A, Cohen SA, Cooley NA, Murphy A, Scutt J, Duncan FW (2002) High activity ethylene trimerisation catalysts based on diphosphine ligands. Chem Commun 8:858–859

    Article  CAS  Google Scholar 

  9. Bollmann A, Blann K, Dixon JT, Hess FM, Killian E, Maumela H, McGuinness DS, Morgan DH, Neveling A, Otto S, Overett M, Slawin AMZ, Wasserscheid P, Kuhlmann S (2004) Ethylene tetramerization: a new route to produce 1-octene in exceptionally high selectivities. J Am Chem Soc 126:14712–14713

    Article  CAS  Google Scholar 

  10. Elowe PR, McCann C, Pringle PG, Spitzmesser SK, Bercaw JE (2006) Nitrogen-linked diphosphine ligands with ethers attached to nitrogen for chromium-catalyzed ethylene tri- and tetramerizations. Organometallics 25:5255–5260

    Article  CAS  Google Scholar 

  11. McGuinness DS, Wasserscheid P, Morgan DH, Dixon JT (2005) Ethylene trimerization with mixed-donor ligand (N, P, S) chromium complexes: effect of ligand structure on activity and selectivity. Organometallics 24:552–556

    Article  CAS  Google Scholar 

  12. Overett MJ, Blann K, Bollmann A, Dixon JT, Haasbroek D, Killian E, Maumela H, McGuinness DS, Morgan DH (2005) Mechanistic investigations of the ethylene tetramerization reaction. J Am Chem Soc 127:10723–10730

    Article  CAS  Google Scholar 

  13. Blann K, Bollmann A, de Bod H, Dixon JT, Killian E, Nongodlwana P, Maumela MC, Maumela H, McConnell AE, Morgan DH, Overett MJ, Preorius M, Kuhlmann S, Wasserscheid P (2007) Ethylene tetramerisation: subtle effects exhibited by N-substituted diphosphinoamine ligands. J Catal 249:244–249

    Article  CAS  Google Scholar 

  14. Killian E, Blann K, Bollmann A, Dixon JT, Kuhlmann S, Maumela MC, Maumela H, Morgan DH, Nongodlwana P, Overett MJ, Pretorius M, Höfener K, Wasserscheid P (2007) The use of bis(diphenylphosphino)amines with N-aryl functionalities in selective ethylene tri- and tetramerisation. J Mol Catal A Chem 270:214–218

    Article  CAS  Google Scholar 

  15. Kuhlmann S, Blann K, Bollmann A, Dixon JT, Killian E, Maumela MC, Maumela H, Morgan DH, Prétorius M, Taccardi N, Wasserscheid P (2007) N-substituted diphosphinoamines: toward rational ligand design for the efficient tetramerization of ethylene. J Catal 245:279–284

    Article  CAS  Google Scholar 

  16. Jiang T, Ning Y, Zhang B, Li J, Wang G, Yi J, Huang Q (2006) Preparation of 1-octene by the selective tetramerization of ethylene. J Mol Catal A Chem 259:161–165

    Article  CAS  Google Scholar 

  17. Jiang T, Chen H, Ning Y, Chen W (2006) Preparation of 1-octene by ethylene tetramerization with high selectivity. Chin Sci Bull 51:521–523

    Article  CAS  Google Scholar 

  18. Jiang T, Zhang S, Jiang X, Yang C, Niu B, Ning Y (2008) The effect of N-aryl bisphosphineamine ligands on the selective ethylene tetramerization. J Mol Catal A Chem 279:90–93

    Article  CAS  Google Scholar 

  19. Jiang T, Tao Y, Gao X, Mao G, Chen H, Cao C, Ning Y (2012) Ethylene tetramerization with a highly active and long-lifetime trinuclear diphenylphosphinoamine/Cr(III)/MAO catalyst. Chin Sci Bull 57:1510–1515

    Article  CAS  Google Scholar 

  20. Sa S, Lee SM, Kim SY (2013) Chromium-based ethylene tetramerization with diphosphinoamines bearing pendent amine donors. J Mol Catal A Chem 378:17–21

    Article  CAS  Google Scholar 

  21. Cloete N, Visser HG, Engelbrecht I, Overett MJ, Gabrielli WF, Roodt A (2013) Ethylene tri- and tetramerization: a steric parameter selectivity switch from X-ray crystallography and computational analysis. Inorg Chem 52:2268–2270

    Article  CAS  Google Scholar 

  22. Meche H (2011) Hydrocarbon Process 90. http://www.hydrocarbonprocessing.com/Article/2775056/Search/North-America.html

  23. Blann K, Bollmann A, Dixon JT, Neveling A, Morgan DH, Maumela H, Killian E, Hess FM, Otto S, Pepler L, Mahomed HA, Overett MJ, Green MJ (2002) Tetramerization of olefins using chromium and heteroatomic ligands. Patent WO2004/056478 A1

  24. Overett MJ, Blann K, Bollmann A, Dixon JT, Hess F, Killian E, Maumela H, Morgan DH, Neveling A, Otto S (2005) Ethylene trimerisation and tetramerisation catalysts with polar-substituted diphosphinoamine ligands. Chem Commun 5:622–624

    Article  CAS  Google Scholar 

  25. Qi Y, Dong Q, Zhong L, Liu Z, Qiu P, Cheng R, He X, Vanderbilt J, Liu B (2010) Role of 1,2-dimethoxyethane in the transformation from ethylene polymerization to trimerization using chromium tris(2-ethylhexanoate)-based catalyst system: a DFT study. Organometallics 29:1588–1602

    Article  CAS  Google Scholar 

  26. Yang Y, Liu Z, Zhong L, Qiu P, Dong Q, Cheng R, Vanderbilt J, Liu B (2011) Spin surface crossing between chromium(I)/sextet and chromium(III)/quartet without deprotonation in SNS-Cr mediated ethylene trimerization. Organometallics 30:5297–5302

    Article  CAS  Google Scholar 

  27. van Rensburg WJ, Steynberg PJ, Meyer WH, Kirk MM, Forman GS (2004) DFT prediction and experimental observation of substrate-induced catalyst decomposition in ruthenium-catalyzed olefin metathesis. J Am Chem Soc 126:14332–14333

    Article  CAS  Google Scholar 

  28. Blom B, Klatt G, Fletcher JCQ, Moss JR (2007) Computational investigation of ethene trimerisation catalysed by cyclopentadienyl chromium complexes. Inorg Chim Acta 360:2890–2896

    Article  CAS  Google Scholar 

  29. Bhaduri S, Mukhopadhyay S, Kulkarni SA (2009) Density functional studies on chromium catalyzed ethylene trimerization. J Organomet Chem 694:1297–1307

    Article  CAS  Google Scholar 

  30. Vidyaratne I, Nikiforov GB, Gorelsky SI, Gambarotta S, Duchateau R, Korobkov I (2009) Isolation of a self-activating ethylene trimerization catalyst. Angew Chem Int Ed 48:6552–6556

    Article  CAS  Google Scholar 

  31. Jabri A, Mason CB, Sim Y, Gambarotta S, Burchell TJ, Duchateau R (2008) Isolation of single-component trimerization and polymerization chromium catalysts: the role of the metal oxidation state. Angew Chem Int Ed 47:9717–9721

    Article  CAS  Google Scholar 

  32. Klemps C, Payet E, Magna L, Saussine L, Le Goff XF, Le Floch P (2009) PCNCP ligands in the chromium-catalyzed oligomerization of ethylene: tri- versus tetramerization. Chem Eur J 15:8259–8268

    Article  CAS  Google Scholar 

  33. Budzelaar PHM (2009) Ethene trimerization at CrI/CrIII-A density functional theory (DFT) study(1). Can J Chem 87:832–837

    Article  CAS  Google Scholar 

  34. Rabeah J, Bauer M, Baumann W, McConnell AEC, Gabrielli WF, Webb PB, Selent D, Brückner A (2013) Formation, operation and deactivation of Cr catalysts in ethylene tetramerization directly assessed by operando EPR and XAS. ACS Catal 3:95–102

    Article  CAS  Google Scholar 

  35. Brückner A, Jabor JK, McConnell AEC, Webb PB (2008) Monitoring structure and valence state of chromium sites during catalyst formation and ethylene oligomerization by in situ EPR spectroscopy. Organometallics 27:3849–3856

    Article  CAS  Google Scholar 

  36. Cruz VL, Ramos J, Martinez S, Munoz-Escalona A, Martinez-Salazar J (2005) Structure-activity relationship study of the metallocene catalyst activity in ethylene polymerization. Organometallics 24:5095–5102

    Article  CAS  Google Scholar 

  37. Cruz VL, Martinez J, Martinez-Salazar J, Ramos J, Reyes ML, Toro-Labbe A, Gutierrez-Giliva S (2007) QSAR model for ethylene polymerisation catalysed by supported bis(imino)pyridine iron complexes. Polymer 48:7672–7678

    Article  CAS  Google Scholar 

  38. Cruz VL, Martinez S, Martinez-Salazar J, Polo-Ceron D, Gomez-Ruiz S, Fajardo M, Prashar S (2007) 3D-QSAR study of ansa-metallocene catalytic behavior in ethylene polymerization. Polymer 48:4663–4674

    Article  CAS  Google Scholar 

  39. Occhipinti HRBG, Jensen VR (2006) Quantitative structure—activity relationships of ruthenium catalysts for olefin metathesis. J Am Chem Soc 128:6952–6964

    Article  CAS  Google Scholar 

  40. Tognetti V, Fayet G, Adamo C (2010) Can molecular quantum descriptors predict the butene selectivity in nickel(II) catalyzed ethylene dimerization? A QSPR study. Int J Quantum Chem 110:540–548

    Article  CAS  Google Scholar 

  41. Lena F, Chai CLL (2010) Quantitative structure–reactivity modeling of copper-catalyzed atom transfer radical polymerization. Polym Chem 1:922–930

    Article  CAS  Google Scholar 

  42. Fayet G, Raybaud P, Toulhoat H, de Bruin T (2009) Iron bis(arylimino)pyridine precursors activated to catalyze ethylene oligomerization as studied by DFT and QSAR approaches. J Mol Struct THEOCHEM 903:100–107

    Article  CAS  Google Scholar 

  43. Yu X, Liu W, Liu F, Wang X (2008) DFT-based theoretical QSPR models of Q-e parameters for the prediction of reactivity in free-radical copolymerizations. J Mol Model 14:1065–1070

    Article  CAS  Google Scholar 

  44. Fayet G, Rotureau P, Joubert L, Adamo C (2010) QSPR modeling of thermal stability of nitroaromatic compounds: DFT vs. AM1 calculated descriptors. J Mol Model 16:805–812

    Article  CAS  Google Scholar 

  45. Gao J, Wang X, Li X, Yu X, Wang H (2006) Prediction of polyamide properties using quantum-chemical methods and BP artificial neural networks. J Mol Model 12:513–520

    Article  CAS  Google Scholar 

  46. McGuinness D, Rucklidge A, Tooze R, Slawin A (2007) Cocatalyst influence in selective oligomerization: effect on activity, catalyst stability, and 1-hexene/1-octene selectivity in the ethylene trimerization and tetramerization reaction. Organometallics 26:2561–2569

    Article  CAS  Google Scholar 

  47. Do LH, Labinger JA, Bercaw JE (2013) Spectral studies of a Cr(PNP)-MAO system for selective ethylene trimerization catalysis: searching for the active species. ACS Catal 3:2582–2585

    Article  CAS  Google Scholar 

  48. Carter E, Cavell KJ, Gabrielli WF, Hanton MJ, Hallett AJ, McDyre L, Platts JA, Smith DM, Murphy DM (2013) Formation of [Cr(CO)x(Ph2PN(iPr)PPh2)]+ structural isomers by reaction of triethylaluminum with a chromium N, N-bis(diarylphosphino)amine complex [Cr(CO)4(Ph2PN(iPr)PPh2)]+: an EPR and DFT investigation. Organometallics 32:1924–1931

    Article  CAS  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato ML, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.01. Gaussian. Inc, Wallingford

    Google Scholar 

  50. Becke AD (1993) Density-functional thermochemistry(iii): the role of exact exchange. J Chem Phys 985:648–5652

    Google Scholar 

  51. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  52. Jeremy MA, Harvey N, Schwarz H, Koch W (1998) The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theor Chem Accounts 9:995–999

    Google Scholar 

  53. Katritzky AR, Lobanov V, Karelson M (1995) CODESSA (Comprehensive Descriptors for Structural and Statistical Analysis). University of Florida, Gainesville, FL

  54. Martí R, Reinelt G (2011) The linear ordering problem, exact and heuristic methods in combinatorial optimization. Springer, Berlin

  55. Shaikh Y, Albahily K, Sutcliffe M, Fomitcheva V, Gambarotta S, Korobkov I, Duchateau R (2013) A highly selective ethylene tetramerization catalyst. Angew Chem 124:1395–1398

    Article  Google Scholar 

  56. Alzamly A, Gambarotta S, Korobkov I (2013) Polymer-free ethylene oligomerization using a pyridine-based pincer PNP-type of ligand. Organometallics. doi:10.1021/om4008828

    Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (21174037, 21004020), Program of Introducing Talents of Discipline to Universities (B08021) and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Liu or Boping Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 3223 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, S., Liu, Z., Zhan, X. et al. 2D-QSPR/DFT studies of aryl-substituted PNP-Cr-based catalyst systems for highly selective ethylene oligomerization. J Mol Model 20, 2129 (2014). https://doi.org/10.1007/s00894-014-2129-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2129-4

Keywords

Navigation