Skip to main content
Log in

DFT-based theoretical QSPR models of Q-e parameters for the prediction of reactivity in free-radical copolymerizations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations at the B3LYP/6–31G(d) level were carried out for 47 vinyl monomers with structures C1H2 = C2HR3, and the calculated quantum chemical descriptors were used to construct quantitative structure–property relationship (QSPR) models of the reactivity parameters of monomers Q and e. Stepwise multiple linear regression analysis (MLRA) and artificial neural networks (ANN) were adopted to generate the models. Simulated with the final optimum back-propagation (BP) neural networks, the results show that predicted lnQ and e values are in good agreement with experimental data, with test sets possessing correlation coefficients of 0.982 for lnQ and 0.943 for e. The proposed ANN models have better prediction ability than existing models.

Plot of calculated versus experimental e values

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alfrey T, Price CC (1947) J Polym Sci 2:101–109

    Article  CAS  Google Scholar 

  2. Laurier GC, O’Driscoll KF, Reilly PM (1985) J Polym Sci: Polym Symp 72:17–26

    Article  CAS  Google Scholar 

  3. Rogers SC, Mackrodt WC, Davis TP (1994) Polymer 35:1258–1267

    Article  CAS  Google Scholar 

  4. Zhan CG, Dixon DA (2002) J Phys Chem A 106:10311–10325

    Article  CAS  Google Scholar 

  5. Pan ZR (2002) Polymer Chemistry, 3rd edn. Chemical Industry, Beijing, pp 95–96

    Google Scholar 

  6. Semchikov YuD (1990) Vysokomolek Soedin A 32:243–252

    CAS  Google Scholar 

  7. Greenly RL (1980) J Macromol Sci Chem 4:427–443

    Article  Google Scholar 

  8. Toropov AA, Kudyshkin VO, Voropaeva NL, Ruban IN, Rashidova SSh (2004) J Struct Chem 45:945–950

    Article  CAS  Google Scholar 

  9. Karelson M, Lobanov VS, Katritzky AR (1996) Chem Rev 96:1027–1043

    Article  CAS  Google Scholar 

  10. Yu XL, Xie ZM, Yi B, Wang XY, Liu F (2007) Eur Polym J 43:818–823

    Article  CAS  Google Scholar 

  11. Yu XL, Yi B, Wang XY (2007) J Comput Chem 28:2336–2341

    Article  CAS  Google Scholar 

  12. Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook, 4th edn. Wiley, New York

    Google Scholar 

  13. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  14. Hobza P, Sÿponer J (1999) Chem Rev 99:3247–3276

    Article  CAS  Google Scholar 

  15. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, MonTgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian 03, Revision B.05. Gaussian, Pittsburgh, PA

    Google Scholar 

  16. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  17. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  18. Cioslowski J (1989) J Am Chem Soc 111:8333–8336

    Article  CAS  Google Scholar 

  19. Fukui K (1975) Theory of orientation and stereoselection. Springer, New York, pp 34–39

    Google Scholar 

  20. Franke R (1984) Theoretical drug design methods. Elsevier, Amsterdam, pp 115–123

    Google Scholar 

  21. Zhou Z, Parr RG (1990) J Am Chem Soc 112:5720–5729

    Article  CAS  Google Scholar 

  22. Mattioni BE, Jurs PC (2002) J Chem Inf Comput Sci 42:232–240

    CAS  Google Scholar 

  23. Gao JW, Wang XY, Li XB, Yu XL, Wang HL (2006) J Mol Model 12:513–520

    Article  CAS  Google Scholar 

  24. Gao JW, Wang XY, Yu XL, Li XB, Wang HL (2006) J Mol Model 12:521–527

    Article  CAS  Google Scholar 

  25. Lewis DFV, Ioannides C, Parke DV (1994) Xenobiotica 24:401–408

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by the Scientific Research Fund of Hunan Provincial Education Department (NO. 07C205), and the Scientific Research Fund of Hunan Institute of Engineering (NO. 0761).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinliang Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Liu, W., Liu, F. et al. DFT-based theoretical QSPR models of Q-e parameters for the prediction of reactivity in free-radical copolymerizations. J Mol Model 14, 1065–1070 (2008). https://doi.org/10.1007/s00894-008-0339-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0339-3

Keywords

Navigation