Skip to main content

Advertisement

Log in

DFT study on crystalline 1,1-diamino-2,2-dintroethylene under high pressures

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

DFT calculations have been performed to study the structural, electronic, absorption, and thermodynamic properties of crystalline 1,1-diamino-2,2-dintroethylene (α-FOX-7) in the pressure range of 0–40 GPa. A comprehensive analysis of the variation trends of the lattice constants, bond lengths, bond angles, and twist angles under compression shows that six structural transformations occur in α-FOX-7 at 2, 5, 11, 19, 29, and 35 GPa, respectively. The C1-N1 and C1-N2 bond lengths decrease much faster than any other bonds under compression, indicating that the C-NO2 cleavage is possible to trigger the decomposition of α-FOX-7. The intra-molecular H-bonding interaction weakens at 2 and 5 GPa, which may be caused by the structural transformations, but it then strengthens with the increasing pressure up to 40 GPa. The inter-molecular H-bonding interaction strengthens with the increasing pressure. The band gap of α-FOX-7 increases at 11 GPa suddenly and decreases obviously at 19, 29, and 35 GPa, which are caused by the structural transformations. α-FOX-7 has relatively high optical activity at high pressure. All the structural transformations are endothermic and not spontaneous at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bemm U, Östmark H (1998) Acta Crystallogr C: Cryst Struct Commun 54:1997–1999

    Article  Google Scholar 

  2. Kjellstrom A, Latypov N, Eldsater C, Eriksson L (2005) FOI Swedish Defense Research Agency Technical Reprot No. SE-147 25 Tumba

  3. Evers J, Klapötke TM, Mayer P, Oehlinger G, Welch JM (2006) Inorg Chem 45:4996–5007

    Article  CAS  Google Scholar 

  4. Crawford MJ, Evers J, Göbel M, Klapötke TM, Mayer P, Oehlinger G, Welch JM (2007) Propell Explos Pyrot 32:478–495

    Article  CAS  Google Scholar 

  5. Herve G, Jacob G, Latypov NV (2005) Tetrahedron 61:6743–6748

    Article  CAS  Google Scholar 

  6. Peiris S, Wong C, Zerilli F, Russell T (2001) Shock Comp Cond Matter CP620:181–184

    Google Scholar 

  7. Hu A, Larade B (2006) Propell Explos Pyrot 31:355–360

    Article  CAS  Google Scholar 

  8. Politzer P, Concha MC, Grice ME, Murray JS, Lane P (1998) J Mol Struct (THEOCHEM) 452:75–83

    Article  CAS  Google Scholar 

  9. Gindulyte A, Massa L, Huang L, Karle J (1999) J Phys Chem A 103:11045–11051

    Article  CAS  Google Scholar 

  10. Ji GF, Xiao HM, Dong HS, Gong XD, Li JS, Wang ZY (2001) Acta Chim Sin 59:39–47

    CAS  Google Scholar 

  11. Sorescu DC, Boatz JA, Thompson DL (2001) J Phys Chem A 105:5010–5021

    Article  CAS  Google Scholar 

  12. Ju XH, Xiao HM, Xia QY (2003) J Chem Phys 119:10247–10255

    Article  CAS  Google Scholar 

  13. Gilardi R (1999) CCCD 127539, Cambridge Structural Database, Cam-bridge Crystallographic Data Center, Cambridge, UK

  14. Zerilli FJ, Kuklja M (2007) J Phys Chem A 111:1721–1725

    Article  CAS  Google Scholar 

  15. Trzciński WA, Cudziło S, Chyłek Z, Szymańczyk L (2008) J Hazard Mater 15:605–612

    Article  Google Scholar 

  16. Zerilli FJ (2006) J Phys Chem A 110:5173–5179

    Article  CAS  Google Scholar 

  17. Fabbiani FPA, Pulham CR (2006) Chem Soc Rev 35:932–942

    Article  CAS  Google Scholar 

  18. Cady HH, Smith LC (1961) Los Alamos Scientific Laboratory Repot LAMS-2653 TID-4500; Los Almos National Laboratory: Los Alamos, NM

  19. Main P, Cobbledic RE, Small RWH (1985) Acta Crystallogr Sect C 41:1351–1354

    Article  Google Scholar 

  20. Dreger ZA, Gupta YM (2010) J Phys Chem A 114:8099–8105

    Article  CAS  Google Scholar 

  21. Dreger ZA, Gupta YM (2007) J Phys Chem B 111:3893–3903

    Article  CAS  Google Scholar 

  22. Pravica M, Liu Y, Robinson J, Velisavljevic N, Liu ZX, Galley M (2012) J Appl Phys 111:103524–103529

    Article  Google Scholar 

  23. Peiris S, Wong C, Zerilli F (2004) J Chem Phys 120:8060–8066

    Article  CAS  Google Scholar 

  24. Peiris S, Wong C, Kuklja M, Zerilli F (2002) 12th Int Deton Symp Pro, pp 12.0617-12.0624

  25. Brangham J, Pravica M, Galley M (2011) Undergergraduate Research Opportunities Program (UROP). pp 23 http://diaitalscholarship.unlv.edu/cs_urop/2011/aug9/23

  26. Zhao J, Liu H (2008) Comput Mater Sci 42:698–703

    Article  CAS  Google Scholar 

  27. Zhu WH, Zhang XW, Wei T, Xiao HM (2009) Theor Chem Acc 124:179–186

    Article  CAS  Google Scholar 

  28. Zhu WH, Zhang XW, Zhu W, Xiao HM (2008) Phys Chem Chem Phys 10:7318–7323

    Article  CAS  Google Scholar 

  29. Zhu WH, Xiao JJ, Xiao HM (2006) Chem Phys Lett 422:117–121

    Article  CAS  Google Scholar 

  30. Zhu WH, Xiao HM (2006) J Phys Chem B 110:18196–18203

    Article  CAS  Google Scholar 

  31. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) J Phys Condens Matter 14:2717–2744

    Article  CAS  Google Scholar 

  32. Vanderbilt D (1990) Phys Rev B 41:7892–7895

    Article  Google Scholar 

  33. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  34. Fletcher R (1980) Practical methods of optimization, vol 1. Wiley, New York

    Google Scholar 

  35. Ceperley DM, Alder BJ (1980) Phys Rev Lett 45:566–569

    Article  CAS  Google Scholar 

  36. Perdew JP, Zunger A (1981) Phys Rev B 23:5048–5079

    Article  CAS  Google Scholar 

  37. Yoo C-S, Cynn H (1999) J Chem Phys 111:10229–10235

    Article  CAS  Google Scholar 

  38. Gump JC, Peiris SM (2005) J Appl Phys 97:053513

    Article  Google Scholar 

  39. Zhu WH, Xiao HM (2009) J Phys Chem B 113:10315–10321

    Article  CAS  Google Scholar 

  40. Zhu WH, Wei T, Zhu W, Xiao HM (2008) J Phys Chem A 112:4688–4693

    Article  CAS  Google Scholar 

  41. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  42. Zhu WH, Xiao JJ, Ji GF, Zhang F, Xiao HM (2007) J Phys Chem B 111:12715–12722

    Article  CAS  Google Scholar 

  43. Xu XJ, Zhu WH, Xiao HM (2007) J Phys Chem B 111:2090–2097

    Article  CAS  Google Scholar 

  44. Zhu WH, Xiao HM (2008) J Comput Chem 29:176–184

    Article  CAS  Google Scholar 

  45. Zhu WH, Xiao HM (2010) Struct Chem 21:657–665

    Article  CAS  Google Scholar 

  46. Saha S, Sinha TP, Mookerjee A (2000) Phys Rev B 62:8828–8834

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21273115) and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Zhu, W. & Xiao, H. DFT study on crystalline 1,1-diamino-2,2-dintroethylene under high pressures. J Mol Model 19, 4039–4047 (2013). https://doi.org/10.1007/s00894-013-1931-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1931-8

Keywords

Navigation