Skip to main content
Log in

Molecular modeling studies give hint for the existence of a symmetric hβ2R-Gαβγ-homodimer

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Several experimental studies suggest that GPCR dimers or oligomers may play an important role in signal transduction. In 2011 the crystal structure of a hβ2R-Gαβγ-complex was published and crystal structures of GPCR dimers are known. But until now, no crystal structure of a GPCR dimer including the Gαβγ-complex is available. In order to obtain detailed insights into interactions within hβ2R dimers including the Gαβγ-complex we performed a potential-energy-surface scan in order to identify favored asymmetric and symmetric hβ2R-Gαβγ-homodimers. This potential energy surface scan suggests, besides the existence of asymmetric dimers, the existence of a symmetric hβ2R-Gαβγ-homodimer with a TM I/VII-contact. A subsequent 20 ns MD simulation of the symmetric homodimer revealed large asymmetric conformational changes of both hβ2Rs, especially regarding TM VII and the interaction network between Asp2.50, Val7.44, Ser7.46 and Tyr7.43. Since similar conformational changes were not observed during the molecular dynamic simulation of the monomeric hβ2R-Gαβγ-complex, it may be suggested that the conformational changes in the symmetric homodimer are related to the presence of the second hβ2R-Gαβγ-complex. Due to the limitations of simulation time, conformational changes within a time scale of μs or ms may of course not be observed. However, the detected conformational changes, especially in TM VII, correspond to minima on the potential energy surface and thus, this study gives new insights into GPCR dimers on molecular level and furthermore, gives suggestions for site-directed mutagenesis studies.

Symmetric hβ2R-Gαβγ-homodimer

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP et al (2005) International union of pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev 57:279–299

    Article  CAS  Google Scholar 

  2. Deupi X, Kobilka BK (2010) Energy landscapes as a tool to integrate GPCR structure, dynamics, and function. Physiology 25:293–303

    Article  CAS  Google Scholar 

  3. Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP, Thian FS, Kobilka TS, Shaw DE, Mueller L, Prosser RS, Kobilka BK (2013) The dynamic process of β2-adrenergic receptor activation. Cell 152:532–542

    Article  CAS  Google Scholar 

  4. Zocher M, Fung JJ, Kobilka BK, Müller DJ (2012) Ligand-specific interactions modulate kinetic, energetic, and mechanical properties of human β2 adrenergic receptor. Structure 20:1391–1402

    Article  CAS  Google Scholar 

  5. Rasmussen SGF, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VRP, Sanishvili R, Fischetti RF, Schertler GFX, Weis WI, Kobilka BK (2007) Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    Article  CAS  Google Scholar 

  6. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  CAS  Google Scholar 

  7. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318:1266–1273

    Article  CAS  Google Scholar 

  8. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien YET, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure 16:897–905

    Article  CAS  Google Scholar 

  9. Wacker D, Genalti G, Brown MA, Katritch V, Abagyan R, Cherezov V, Stevens RC (2010) Conserved binding mode of the human 2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J Am Chem Soc 132:11443–11445

    Article  CAS  Google Scholar 

  10. Bokoch MP, Zou Y, Rasmussen SGF, Liu CW, Nygaard R, Rosenbaum DM, Fund JJ, Choi HJ, Thian FS, Kobilka TS, Publisi JD, Weis WI, Pardo L, Prosser RS, Mueller L, Kobilka BK (2010) Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463:108–112

    Article  CAS  Google Scholar 

  11. Rasmussen SGF, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah STY, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the β2 adrenergic receptor—Gs protein complex. Nature 477:549–555

    Article  CAS  Google Scholar 

  12. Oldham WM, Hamm HW (2006) Structural basis of function in heterotrimeric G proteins. Q Rev Biophys 39:117–166

    Article  CAS  Google Scholar 

  13. Oldham WM, Hamm HE (2008) Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 9:60–71

    Article  CAS  Google Scholar 

  14. Herrmann R, Heck M, Henklein P, Henklein P, Kleuss C, Hofmann KP, Ernst OP (2004) Sequence of interactions in receptor-G protein coupling. J Biol Chem 279:24283–24290

    Article  CAS  Google Scholar 

  15. Taylor JM, Jacob-Mosier GG, Lawton RG, Remmers AE, Neubig RR (1994) Binding of an α2 adrenergic receptor third intracellular loop peptide to Gβ and the amino terminus of Gα. J Biol Chem 269:27618–27624

    CAS  Google Scholar 

  16. Lichtarge O, Bourne HR, Cohen FE (1996) Evolutionarily conserved Gαβγ binding surfaces support a model of the G protein-receptor complex. Proc Natl Acad Sci USA 93:7507–7511

    Article  CAS  Google Scholar 

  17. Bae H, Cabrera-Vera TM, Depree KM, Graber SG, Hamm HE (1999) Two amino acids within the α4 helix of Gi1 mediate coupling with 5-hydroxytryptamine1B receptors. J Biol Chem 274:14963–14971

    Article  CAS  Google Scholar 

  18. Ho MK, Wong YH (2000) The amino terminus of Gαt is required for receptor recognition, whereas the α4/β6 loop is essential for inhibition of adenylyl cyclase. Mol Pharmacol 58:993–1000

    CAS  Google Scholar 

  19. Greasley PJ, Fanelli F, Scheer A, Abuin L, Nenniger-Tosato M, de Benedetti PG, Cotecchia S (2001) Mutational and computational analysis of the α1B-adrenergic receptor: involvement of basic and hydrophobic residues in receptor activation and G protein coupling. J Biol Chem 276:46485–46494

    Article  CAS  Google Scholar 

  20. Oliveira L, Paiva PB, Paiva ACM, Vriend G (2003) Sequence analysis reveals how G protein-coupled receptors transduce the signal to the G protein. Proteins 52:553–560

    Article  CAS  Google Scholar 

  21. Janz JM, Farrens DL (2004) Rhodopsin activation expose a key hydrophobic binding site for the transducin α-subunit C terminus. J Biol Chem 279:29767–29773

    Article  CAS  Google Scholar 

  22. Raimondi F, Seeber M, de Benedetti PG, Fanelli F (2008) Mechanisms of the inter- and intramolecular communication in GPCRs and G proteins. J Am Chem Soc 130:4310–4325

    Article  CAS  Google Scholar 

  23. Strasser A, Wittmann HJ (2010) Distinct interactions between the human adrenergic β2 receptor and Gαs—an in silico study. J Mol Model 16:1307–1318

    Article  CAS  Google Scholar 

  24. Strasser A, Wittmann HJ (2012) hβ2R-Gαs complex: prediction versus crystal structure—how valuable are predictions based on molecular modelling studies? J Mol Model 18:3439–3444

    Article  CAS  Google Scholar 

  25. Milligan G (2004) G Protein-coupled receptor dimerization: function and ligand pharmacology. Mol Pharmacol 66:1–7

    Article  CAS  Google Scholar 

  26. Whorton MR, Bokoch MP, Rasmussen SGF, Huang B, Zare RN, Kobilka, Sunahara RK (2007) A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. PNAS 104:7682–7687

    Article  CAS  Google Scholar 

  27. Rovira X, Pin JP, Giraldo J (2010) The asymmetric/symmetric activation of GPCR dimers as a possible mechanistic rationale for multiple signalling pathways. Trends Pharmacol Sci 31:15–21

    Google Scholar 

  28. Simpson LM, Taddese B, Wall ID, Reynolds CA (2010) Bioinformatics and molecular modelling approachs to GPCR oligomerization. Curr Opin Pharmacol 10:30–37

    Article  CAS  Google Scholar 

  29. Han Y, Moreira IS, Urizar E, Weinstein H, Javitch JA (2009) Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat Chem Biol 5:688–695

    Article  CAS  Google Scholar 

  30. Kamal M, Maurice P, Jockers R (2011) Expanding the concept of G protein-coupled receptor (GPCR) dimer asymmetry toward GPCR-interacting proteins. Pharmaceuticals 4:273–284

    Article  CAS  Google Scholar 

  31. Fotiadis D, Jastrzebska B, Philippsen A, Müller DJ, Palczewski K, Engel A (2006) Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors. Curr Opin Struc Biol 16:252–259

    Article  CAS  Google Scholar 

  32. Granier S, Kobilka BK (2012) A new era of GPCR structural and chemical biology. Nat Chem Biol 8:670–673

    Article  CAS  Google Scholar 

  33. Gorinski N, Kowalsman N, Renner U, Wirth A, Reinartz MT, Seifert R, Zeug A, Ponimaskin E, Niv MY (2012) Computational and experimental analysis of the transmembrane domain 4/5 dimerization interface of the serotonin 5-HT1A receptor. Mol Pharmacol 82:448–463

    Article  CAS  Google Scholar 

  34. Filizola M (2012) Assessing the relative stability of dimer interfaces in G protein-coupled receptors. PLOS Comput Biol doi: 10.1371/journal.pcbi.1002649

  35. Shan J, Khelashvili G, Mondal S, Mehler EL, Weinstein H (2012) Ligand-dependent conformations and dynamics of the serotonin 5-HT2A receptor determine its activation and membrane-driven oligomerization properties. PLOS Comp Biol 8:1–15

    Article  Google Scholar 

  36. Periole X, Knepp AM, Sakmar TP, Marrink SJ, Huber T (2012) Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers. J Am Chem Soc 134:10959–10965

    Article  CAS  Google Scholar 

  37. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK (2012) Structure of the δ-opioid receptor bound to naltrindole. Nature 485:400–405

    Article  CAS  Google Scholar 

  38. Hu J, Thor D, Zhou Y, Liu T, Wang Y, McMillin SM, Mistry R, Challiss RAJ, Costanzi S, Wess J (2012) Structural aspects of M3 muscarinic acetylcholine receptor dimer formation and activation. FASEB J 26:604–616

    Article  CAS  Google Scholar 

  39. Manglik A, Kruse A, Kobilka TS, Thian TS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the m-opioid receptor bound to a morphinan antagonist. Nature 485:321–327

    Article  CAS  Google Scholar 

  40. Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556

    Article  CAS  Google Scholar 

  41. Jastrzebska B, Orban T, Golczak M, Engel A, Palczewski K (2013) Asymmetry of the rhodopsin dimer in complex with transducin. FASEB J 27 doi:10.1096/fj.12-225383

  42. Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M, Bouvier M (2000) Detection of beta 2-adrenergic receptor dimerizaion in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci USA 97:3684–3689

    CAS  Google Scholar 

  43. Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454:183–187

    Article  CAS  Google Scholar 

  44. Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP, Carroll FI, Mascarella SW, Westkaemper RB, Mosier PD, Roth BL, Cherezov V, Stevens RC (2012) Structure of the human κ-opioid receptor in complex with IDTic. Nature 485:327–332

    Article  CAS  Google Scholar 

  45. Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DC, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071

    Article  CAS  Google Scholar 

  46. Huang J, Chen S, Zhang J, Huang XY (2013) Crystal structure of oligomeric β1-adrenergic G protein-coupled receptors in ligand-free basal state. Nat Struct Mol Biol 20:419–425

    Article  CAS  Google Scholar 

  47. Salahpour A, Angers S, Mercier JF, Lagace M, Marullo S, Bouvier M (2004) Homodimerization of the beta-2-adrenergic receptor as a prerequisite for cell surface targeting. J Biol Chem 279:33390–333397

    Article  CAS  Google Scholar 

  48. Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, Ijzerman AP, Cherezov V, Stevens RC (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–235

    Article  CAS  Google Scholar 

  49. Sunahara RK, Tesmer JJ, Gilman AG, Sprang SR (1997) Crystal structure of the adenylyl cyclase activator Gsα. Science 278:1943–1947

    Article  CAS  Google Scholar 

  50. Bhattacharya S, Vaidehi N (2010) Computational mapping of the conformational transitions in agonist selective pathways of a G-protein coupled receptor. J Am Chem Soc 132:5205–5214

    Article  CAS  Google Scholar 

  51. Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HFC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  52. Goetz A, Lanig H, Gmeiner P, Clark T (2011) Molecular dynamics simulations of the effect of the G-Protein and diffusible ligands on the 2-adrenergic receptor. J Mol Biol 414:611–623

    Article  CAS  Google Scholar 

  53. Humphrey W, Dalke A, Schulten K (1996) VMD – visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  54. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  CAS  Google Scholar 

  55. Schüttelkopf AW, van Aalten DMF (2004) PRODRG—a tool for high throughput crystallography of protein-ligand complexes. Acta Crystallogr D60:1355–1363

    Google Scholar 

  56. Böckmann RA, Hac A, Heimburg T, Grubmüller H (2003) Effect of sodium chloride on a lipid bilayer. Biophys J 85:1647–1655

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by DFG (STR 1125/1-1) of the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Straßer.

Additional information

Andrea Straßer and Hans-Joachim Wittmann contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Total energy of the whole simulation box and box volume during the productive phase of the simulations for the monomer and the symmetric homodimer. (JPEG 50 kb)

High resolution image (TIFF 1805 kb)

Fig. S2

Relative density profile of water and the lipid bilayer. The relative density profile of water and the nitrogens of the POPC lipid bilayer are given as mean value with respect to time for the productive simulation phase of the symmetric homodimer. The relative density is calculated independently for the water and the POPC-nitrogen in such a manner that the maximum for both curves is 1. The gray line behind the curve for water indicates the relative water density at 200 different time frames in 100 ps steps within the productive simulation. (JPEG 60 kb)

High resolution image (TIFF 4072 kb)

Fig. S3

Lipids between both hβ2Rs at different times of equilibration and productive phase. For clarity, only the tube models of the hβ2Rs are shown, but not the G proteins. (JPEG 381 kb)

High resolution image (TIFF 10736 kb)

Fig. S4

Interaction between the ligand P0G and the hβ2R. A, Snapshot of the ligand in the binding pocket of the hβ2R (hβ2R (r2symdim), complex II) of the symmetric dimer. Besides a direct H-bond interaction between the ligand and hβ2R, water molecules, which are present in the binding pocket, mediate the interaction between the ligand and hβ2R. Exemplary, three water molecules are shown. Due to a high fluctuation of the water molecules into the binding pocket and back into the extracellular part, they exchange with each other during the simulation. B, Direct H-bonds between the ligand and hβ2R (rmono) of the monomeric hβ2R-Gαβγ-complex and both hβ2Rs (r1symdim and r2symdim) of the symmetric homodimeric hβ2R-Gαβγ- hβ2R-Gαβγ-complex. The red dots indicated the presence of a direct H-bond between P0G and the hβ2R. (JPEG 181 kb)

High resolution image (TIFF 6749 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straßer, A., Wittmann, HJ. Molecular modeling studies give hint for the existence of a symmetric hβ2R-Gαβγ-homodimer. J Mol Model 19, 4443–4457 (2013). https://doi.org/10.1007/s00894-013-1923-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1923-8

Keywords

Navigation