Skip to main content

Probing Self-Assembly of G Protein-Coupled Receptor Oligomers in Membranes Using Molecular Dynamics Modeling and Experimental Approaches

  • Chapter
  • First Online:
G-Protein-Coupled Receptor Dimers

Part of the book series: The Receptors ((REC,volume 33))

Abstract

G protein-coupled receptors (GPCRs) transduce chemical signals across membranes and mediate many fundamental cellular signaling pathways. The “signalosome” is the basic signaling unit and comprises and an agonist ligand-receptor complex bound to a heterotrimeric guanine nucleotide-binding regulatory protein (G protein) in a biological membrane. Although in many cases, a monomeric GPCR is competent to transduce signals, the role of receptor dimerization and higher-order self-assembly and how receptor oligomers affect pharmacology and cellular physiology has emerged as one of the most intriguing and challenging problems in the field. Here we review recent insights gained from a multidisciplinary research approach using computational coarse grain molecular dynamics (CGMD) simulations and experiments facilitated by molecular and chemical biology approaches. One particular focus of recent work has been to define the contact sites between receptor dimers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

5-HT1AR:

serotonin1A receptor

A1AR:

adenosine A1A receptor

A2AR:

adenosine A2A receptor

AFM:

atomic force microscopy

β1-AR:

β1-adrenergic receptor

β2-AR:

β2-adrenergic receptor

BC:

benzylcytosine

BG:

benzylguanine

BRET:

bioluminescence resonance energy transfer

CGMD:

coarse-grain molecular dynamics

DAFT:

docking assay for TM components

DHA:

docosahexaenoic acid

DOPC:

1,2-dioleyl-sn-glycero-3-phosphocholine

DPPC:

1,2-dipalmitoyl-sn-glycero-3-phosphocholine

DSPC:

1,2-distearoyl-sn-glycero-3-phosphocholine

D2R:

dopamine D2 receptor

ECL:

extracellular loop

FCS:

fluorescence correlation spectroscopy

FPR:

N-formyl-peptide receptor

FRAP:

fluorescence recovery after photobleaching

G protein:

heterotrimeric guanine nucleotide-binding regulatory protein

GABA:

γ-aminobutyric acid

GFP:

green fluorescent protein

GPCRs:

G protein-coupled receptors

H:

helix

ICL:

intracellular loop

LHR:

luteinizing hormone receptor

mGlu1:

metabotropic glutamate receptor 1

meta-I:

metarhodopsin I

meta-II:

metarhodopsin-II

NSOM:

near-field scanning optical microscopy

OR:

opioid receptor

PIP:

phosphatidylinositol bisphosphate

PMF:

potential-of-mean-force

POPC:

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

PUFA:

polyunsaturated fatty acid

ROS:

rod outer segment

RLuc:

Renilla luciferase

S1PR1 :

sphingosine 1-phosphate receptor 1

SDPC:

1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine

SDPE:

1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphatidylethanolamine

SM:

sphingomyelin

SMLM:

single-molecule localization microscopy

SPT:

single-particle tracking

TM:

transmembrane

US:

umbrella sampling

WHAM:

weighted histogram analysis method

References

  1. Lv X, Liu J, Shi Q, Tan Q, Wu D, Skinner JJ, et al. In vitro expression and analysis of the 826 human G protein-coupled receptors. Protein Cell. 2016;7(5):325–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huber T, Sakmar TP. New approaches for studying the dynamic assembly and activation of GPCR signaling complexes. Trends Pharmacol Sci. 2011;32(7):410–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Periole X. Interplay of G protein-coupled receptors with the membrane: insights from supra-atomic coarse grain molecular dynamics simulations. Chem Rev. 2017;

    Google Scholar 

  4. Tian H, Furstenberg A, Huber T. Labeling and single-molecule methods to monitor G protein-coupled receptor dynamics. Chem Rev. 2016.

    Google Scholar 

  5. Whorton MR, Bokoch MP, Rasmussen SGF, Huang B, Zare RN, Kobilka B, et al. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci U S A. 2007;104(18):7682–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Banerjee S, Huber T, Sakmar TP. Rapid incorporation of functional rhodopsin into nanoscale apolipoprotein bound bilayer (NABB) particles. J Mol Biol. 2008;377(4):1067–81.

    Article  CAS  PubMed  Google Scholar 

  7. Whorton MR, Jastrzebska B, Park PS, Fotiadis D, Engel A, Palczewski K, et al. Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J Biol Chem. 2008;283(7):4387–94.

    Article  CAS  PubMed  Google Scholar 

  8. Ernst OP, Gramse V, Kolbe M, Hofmann KP, Heck M. Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit. Proc Natl Acad Sci U S A. 2007;104(26):10859–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Botelho AV, Huber T, Sakmar TP, Brown MF. Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. Biophys J. 2006;91(12):4464–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mansoor SE, Palczewski K, Farrens DL. Rhodopsin self-associates in asolectin liposomes. Proc Natl Acad Sci U S A. 2006;103(9):3060–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fung JJ, Deupi X, Pardo L, Yao XJ, Velez-Ruiz GA, DeVree BT, et al. Ligand-regulated oligomerization of β(2)-adrenoceptors in a model lipid bilayer. EMBO J. 2009;28(21):3315–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bouvier M. Oligomerization of G protein-coupled transmitter receptors. Nat Rev Neurosci. 2001;2(4):274–86.

    Article  CAS  PubMed  Google Scholar 

  13. Angers S, Salahpour A, Bouvier M. Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol. 2002;42:409–35.

    Article  CAS  PubMed  Google Scholar 

  14. Terrillon S, Bouvier M. Roles of G protein-coupled receptor dimerization – from ontogeny to signalling regulation. EMBO Rep. 2004;5(1):30–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lohse MJ. Dimerization in GPCR mobility and signaling. Curr Opin Pharmacol. 2010;10(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  16. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K. Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature. 2003;421(6919):127–8.

    Article  CAS  PubMed  Google Scholar 

  17. Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A. Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J Biol Chem. 2003;278(24):21655–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ianoul A, Grant DD, Rouleau Y, Bani-Yaghoub M, Johnston LJ, Pezacki JP. Imaging nanometer domains of β-adrenergic receptor complexes on the surface of cardiac myocytes. Nat Chem Biol. 2005;1(4):196–202.

    Article  CAS  PubMed  Google Scholar 

  19. Dorsch S, Klotz KN, Engelhardt S, Lohse MJ, Bunemann M. Analysis of receptor oligomerization by frap microscopy. Nat Methods. 2009;6(3):225–30.

    Article  CAS  PubMed  Google Scholar 

  20. Albizu L, Cottet M, Kralikova M, Stoev S, Seyer R, Brabet I, et al. Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol. 2010;6(8):587–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gurevich VV, Gurevich EV. GPCR monomers and oligomers: it takes all kinds. Trends Neurosci. 2008;31(2):74–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ferre S, Casado V, Devi LA, Filizola M, Jockers R, Lohse MJ, et al. G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev. 2014;66(2):413–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Margeta-Mitrovic M, Jan YN, Jan LY. A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron. 2000;27(1):97–106.

    Article  CAS  PubMed  Google Scholar 

  24. Salahpour A, Angers S, Mercier JF, Lagace M, Marullo S, Bouvier M. Homodimerization of the β(2)-adrenergic receptor as a prerequisite for cell surface targeting. J Biol Chem. 2004;279(32):33390–7.

    Article  CAS  PubMed  Google Scholar 

  25. Hague C, Uberti MA, Chen ZJ, Hall RA, Minneman KP. Cell surface expression of α(1d)-adrenergic receptors is controlled by heterodimerization with α(1b)-adrenergic receptors. J Biol Chem. 2004;279(15):15541–9.

    Article  CAS  PubMed  Google Scholar 

  26. Maurice P, Kamal M, Jockers R. Asymmetry of GPCR oligomers supports their functional relevance. Trends Pharmacol Sci. 2011;32(9):514–20.

    Article  CAS  PubMed  Google Scholar 

  27. George SR, O’Dowd BF, Lee SR. G protein-coupled receptor oligomerization and its potential for drug discovery. Nat Rev Drug Discov 2002;1(10):808–820.

    Google Scholar 

  28. Mathiasen S, Tonnesen A, Christensen S, Fung JJ, Rasmussen SGF, Borrero E, et al. Membrane curvature regulates the oligomerization of human β(2)-adrenergic receptors. Biophys J. 2013;104(2):42A–A.

    Google Scholar 

  29. Pfleger KDG, Eidne KA. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods. 2006;3(3):165–74.

    Article  CAS  PubMed  Google Scholar 

  30. Prinz A, Diskar M, Herberg FW. Application of bioluminescence resonance energy transfer (BRET) for biomolecular interaction studies. ChemBioChem. 2006;7(7):1007–12.

    Article  CAS  PubMed  Google Scholar 

  31. Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M, et al. Detection of β(2)-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci U S A. 2000;97(7):3684–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kroeger KM, Hanyaloglu AC, Seeber RM, Miles LE, Eidne KA. Constitutive and agonist-dependent homo-oligomerization of the thyrotropin-releasing hormone receptor: detection in living cells using bioluminescence resonance energy transfer. J Biol Chem. 2001;276(16):12736–43.

    Article  CAS  PubMed  Google Scholar 

  33. Mercier JF, Salahpour A, Angers S, Breit A, Bouvier M. Quantitative assessment of β(1)- and β(2)-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J Biol Chem. 2002;277(47):44925–31.

    Article  CAS  PubMed  Google Scholar 

  34. Ciruela F, Fernandez-Duenas V. GPCR oligomerization analysis by means of BRET and dFRAP. Methods Mol Biol. 2015;1272:133–41.

    Article  CAS  PubMed  Google Scholar 

  35. Milligan G, Bouvier M. Methods to monitor the quaternary structure of G protein-coupled receptors. FEBS J. 2005;272(12):2914–25.

    Article  CAS  PubMed  Google Scholar 

  36. Lohse MJ, Nuber S, Hoffmann C. Fluorescence/bioluminescence resonance energy transfer techniques to study G protein-coupled receptor activation and signaling. Pharmacol Rev. 2012;64(2):299–336.

    Article  CAS  PubMed  Google Scholar 

  37. Juillerat A, Gronemeyer T, Keppler A, Gendreizig S, Pick H, Vogel H, et al. Directed evolution of O6-alkylguanine-DNA alkyltransferase for efficient labeling of fusion proteins with small molecules in vivo. Chem Biol. 2003;10(4):313–7.

    Article  CAS  PubMed  Google Scholar 

  38. Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol. 2003;21(1):86–9.

    Article  CAS  PubMed  Google Scholar 

  39. Keppler A, Pick H, Arrivoli C, Vogel H, Johnsson K. Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci U S A. 2004;101(27):9955–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gautier A, Juillerat A, Heinis C, Correa IR Jr, Kindermann M, Beaufils F, et al. An engineered protein tag for multiprotein labeling in living cells. Chem Biol. 2008;15(2):128–36.

    Article  CAS  PubMed  Google Scholar 

  41. Keppler A, Arrivoli C, Sironi L, Ellenberg J. Fluorophores for live cell imaging of AGT fusion proteins across the visible spectrum. Biotechniques. 2006;41(2):167–70.

    Article  CAS  PubMed  Google Scholar 

  42. Lukinavicius G, Umezawa K, Olivier N, Honigmann A, Yang GY, Plass T, et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat Chem. 2013;5(2):132–9.

    Article  CAS  PubMed  Google Scholar 

  43. Maurel D, Comps-Agrar L, Brock C, Rives M-L, Bourrier E, Ayoub MA, et al. Cell-surface protein-protein interaction analysis with time-resolved fret and SNAP-tag technologies: application to GPCR oligomerization. Nat Methods. 2008;5(18488035):561–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Petershans A, Wedlich D, Fruk L. Bioconjugation of CdSe/ZnS nanoparticles with SNAP tagged proteins. Chem Commun. 2011;47(38):10671–3.

    Article  CAS  Google Scholar 

  45. Gronemeyer T, Godin G, Johnsson K. Adding value to fusion proteins through covalent labeling. Curr Opin Biotechnol. 2005;16(4):453–8.

    Article  CAS  PubMed  Google Scholar 

  46. Böhme I, Morl K, Bamming D, Meyer C, Beck-Sickinger AG. Tracking of human Y receptors in living cells -a fluorescence approach. Peptides. 2007;28(2):226–34.

    Article  PubMed  CAS  Google Scholar 

  47. Roed SN, Wismann P, Underwood CR, Kulahin N, Iversen H, Cappelen KA, et al. Real-time trafficking and signaling of the glucagon-like peptide-1 receptor. Mol Cell Endocrinol. 2014;382(2):938–49.

    Article  CAS  PubMed  Google Scholar 

  48. Ward RJ, Xu T-R, Milligan G. GPCR oligomerization and receptor trafficking. Methods Enzymol. 2013;521:69–90.

    Article  CAS  PubMed  Google Scholar 

  49. Landgraf D, Okumus B, Chien P, Baker TA, Paulsson J. Segregation of molecules at cell division reveals native protein localization. Nat Methods. 2012;9(5):480–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zwier JM, Bazin H, Lamarque L, Mathis G. Luminescent lanthanide cryptates: from the bench to the bedside. Inorg Chem. 2014;53(4):1854–66.

    Article  CAS  PubMed  Google Scholar 

  51. Yuan JL, Wang GL. Lanthanide complex-based fluorescence label for time-resolved fluorescence bioassay. J Fluoresc. 2005;15(4):559–68.

    Article  CAS  PubMed  Google Scholar 

  52. Zwier JM, Roux T, Cottet M, Durroux T, Douzon S, Bdioui S, et al. A fluorescent ligand-binding alternative using tag-lite (R) technology. J Biomol Screen. 2010;15(10):1248–59.

    Article  CAS  PubMed  Google Scholar 

  53. Emami-Nemini A, Roux T, Leblay M, Bourrier E, Lamarque L, Trinquet E, et al. Time-resolved fluorescence ligand binding for G protein-coupled receptors. Nat Protoc. 2013;8(7):1307–20.

    Article  PubMed  CAS  Google Scholar 

  54. Comps-Agrar L, Maurel D, Rondard P, Pin J-P, Trinquet E, Prézeau L. Cell-surface protein–protein interaction analysis with time-resolved FRET and SNAP-Tag technologies. Appl G Prot –Coupl Recept Oligomerizat. 2011;756:201–214.

    Google Scholar 

  55. Appelbe S, Milligan G. Hetero-oligomerization of chemokine receptors. Methods Enzymol. 2009;461:207–25.

    Article  CAS  PubMed  Google Scholar 

  56. Alvarez-Curto E, Ward RJ, Pediani JD, Milligan G. Ligand regulation of the quaternary organization of cell surface M3 muscarinic acetylcholine receptors analyzed by fluorescence resonance energy transfer (FRET) imaging and homogeneous time-resolved FRET. J Biol Chem. 2010;285(30):23318–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Briddon SJ, Hill SJ. Pharmacology under the microscope: the use of fluorescence correlation spectroscopy to determine the properties of ligand-receptor complexes. Trends Pharmacol Sci. 2007;28(12):637–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Steel E, Murray VL, Liu AP. Multiplex detection of homo- and heterodimerization of G protein-coupled receptors by proximity biotinylation. PLoS One. 2014;9(4):e93646.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Calebiro D, Rieken F, Wagner J, Sungkaworn T, Zabel U, Borzi A, et al. Single-molecule analysis of fluorescently labeled G protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci U S A. 2013;110(2):743–8.

    Article  CAS  PubMed  Google Scholar 

  60. Olofsson L, Felekyan S, Doumazane E, Scholler P, Fabre L, Zwier JM, et al. Fine tuning of sub-millisecond conformational dynamics controls metabotropic glutamate receptors agonist efficacy. Nat Commun. 2014;5

    Google Scholar 

  61. Ward RJ, Pediani JD, Milligan G. Heteromultimerization of cannabinoid CB(1) receptor and orexin Ox(1) receptor generates a unique complex in which both protomers are regulated by orexin A. J Biol Chem. 2011;286(43):37414–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Doumazane E, Scholler P, Zwier JM, Trinquet E, Rondard P, Pin JP. A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J. 2011;25(1):66–77.

    Article  CAS  PubMed  Google Scholar 

  63. Kern A, Albarran-Zeckler R, Walsh HE, Smith RG. Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism. Neuron. 2012;73(2):317–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pou C, la Cour CM, Stoddart LA, Millan MJ, Milligan G. Functional homomers and heteromers of dopamine D-2L and D-3 receptors co-exist at the cell surface. J Biol Chem. 2012;287(12):8864–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fricke F, Dietz MS, Heilemann M. Single-molecule methods to study membrane receptor oligomerization. ChemPhysChem. 2015;16(4):713–21.

    Article  CAS  PubMed  Google Scholar 

  66. Kasai RS, Kusumi A. single-molecule imaging revealed dynamic gpcr dimerization. Curr Opin Cell Biol. 2014;27:78–86.

    Article  CAS  PubMed  Google Scholar 

  67. Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JET, Lazareno S, et al. Formation and dissociation of M-1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci U S A. 2010;107(6):2693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kasai RS, Suzuki KGN, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, et al. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J Cell Biol. 2011;192(3):463–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fotiadis D, Jastrzebska B, Philippsen A, Muller DJ, Palczewski K, Engel A. Structure of the rhodopsin dimer: a working model for G protein-coupled receptors. Curr Opin Struct Biol. 2006;16(2):252–9.

    Article  CAS  PubMed  Google Scholar 

  70. Endesfelder U, Finan K, Holden SJ, Cook PR, Kapanidis AN, Heilemann M. Multi-scale spatial organization of rna polymerase in Escherichia coli. Biophys J. 2013;105(1):172–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fricke F, Beaudouin J, Eils R, Heilemann M. One, two or three? Probing the stoichiometry of membrane proteins by single-molecule localization microscopy. Sci Rep. 2015;5

    Google Scholar 

  72. Vobornik D, Rouleau Y, Haley J, Bani-Yaghoub M, Taylor R, Johnston LJ, et al. Nanoscale organization of β(2)-adrenergic receptor-venus fusion protein domains on the surface of mammalian cells. Biochem Biophys Res Commun. 2009;382(1):85–90.

    Article  CAS  PubMed  Google Scholar 

  73. Annibale P, Vanni S, Scarselli M, Rothlisberger U, Radenovic A. Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLoS One. 2011;6(7):e22678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Scarselli M, Annibale P, Radenovic A. Cell type-specific β2-adrenergic receptor clusters identified using photoactivated localization microscopy are not lipid raft related, but depend on actin cytoskeleton integrity. J Biol Chem. 2012;287(20):16768–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Scarselli M, Annibale P, Gerace C, Radenovic A. Enlightening G protein-coupled receptors on the plasma membrane using super-resolution photoactivated localization microscopy. Biochem Soc Trans. 2013;41:191–6.

    Article  CAS  PubMed  Google Scholar 

  76. Latty SL, Felce JH, Weimann L, Lee SF, Davis SJ, Klenerman D. Referenced single-molecule measurements differentiate between GPCR oligomerization states. Biophys J. 2015;109(9):1798–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee SF, Vérolet Q, Fürstenberg A. Improved super-resolution microscopy with oxazine fluorophores in heavy water. Angew Chem Int Ed. 2013;52(34):8948–51.

    Article  CAS  Google Scholar 

  78. Jonas KC, Fanelli F, Huhtaniemi IT, Hanyaloglu AC. Single molecule analysis of functionally asymmetric G protein-coupled receptor (GPCR) oligomers reveals diverse spatial and structural assemblies. J Biol Chem. 2015;290(7):3875–92.

    Article  CAS  PubMed  Google Scholar 

  79. Grossfield A. Recent progress in the study of G protein-coupled receptors with molecular dynamics computer simulations. BBA-Biomembranes. 2011;1808(7):1868–78.

    Article  CAS  PubMed  Google Scholar 

  80. Johnston JM, Filizola M. Showcasing modern molecular dynamics simulations of membrane proteins through G protein-coupled receptors. Curr Opin Struct Biol. 2011;21(4):552–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Horn JN, Kao T-C, Grossfield A. Coarse-grained molecular dynamics provides insight into the interactions of lipids and cholesterol with rhodopsin. Adv Exp Med Biol. 2014;796(Chapter 5):75–94.

    Google Scholar 

  82. Kaczor AA, Rutkowska E, Bartuzi D, Targowska-Duda KM, Matosiuk D, Selent J. Computational methods for studying G protein- coupled receptors (GPCRs): Elsevier Ltd.; 2015 Dec 14. P. 1–41.

    Google Scholar 

  83. Johnston JM, Filizola M. Beyond standard molecular dynamics: investigating the molecular mechanisms of G protein-coupled receptors with enhanced molecular dynamics methods, vol. 796. Dordrecht, Springer; 2014. p. 95–125.

    Google Scholar 

  84. Sengupta D, Joshi M, Athale CA, Chattopadhyay A. What can simulations tell us about GPCRs: integrating the scales. Elsevier Ltd.; 2015 Dec 10. P. 1–24.

    Google Scholar 

  85. Mondal S, Khelashvili G, Johner N, Weinstein H. how the dynamic properties and functional mechanisms of GPCRs are modulated by their coupling to the membrane environment, vol. 796. Dordrecht, Springer; 2014. p. 55–74.

    Google Scholar 

  86. Mondal S, Khelashvili G, Weinstein H. Not just an oil slick: how the energetics of protein-membrane interactions impacts the function and organization of transmembrane proteins. Biophys J. 2014;106(11):2305–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ingólfsson HI, Arnarez C, Periole X, Marrink SJ. Computational “microscopy” of cellular membranes. J Cell Sci 2016;129(2):257–268.

    Google Scholar 

  88. Pluhackova K, Böckmann RA. Biomembranes in atomistic and coarse-grained simulations. J Phys Condens Matter. 2015:1–19.

    Google Scholar 

  89. Ingólfsson HI, López CA, Uusitalo JJ, de Jong DH, Gopal SM, Periole X, et al. The power of coarse graining in biomolecular simulations. Wiley Interdiscip Rev Comput Mol Sci. 2014;4(3):225–48.

    Article  PubMed  CAS  Google Scholar 

  90. Noid WG. Perspective: Coarse-grained models for biomolecular systems. J Chem Phys. 2013;139(9):090901.

    Article  CAS  PubMed  Google Scholar 

  91. Saunders MG, Voth GA. Coarse-graining methods for computational biology. Annu Rev Biophys. 2013;42(1):73–93.

    Article  CAS  PubMed  Google Scholar 

  92. Marrink SJ, Tieleman DP. Perspective on the Martini model. Chem Soc Rev. 2013;42(16):6801–22.

    Article  CAS  PubMed  Google Scholar 

  93. Marrink SJ, de Vries AH, Mark AE. Coarse grained model for semiquantitative lipid simulations. J Phys Chem B. 2004;108(2):750–60.

    Article  CAS  Google Scholar 

  94. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111(27):7812–24.

    Article  CAS  PubMed  Google Scholar 

  95. Marrink SJ, Mark AE. Molecular dynamics simulation of the formation, structure, and dynamics of small phospholipid vesicles. J Am Chem Soc. 2003;125(49):15233–42.

    Article  CAS  PubMed  Google Scholar 

  96. Ingólfsson HI, Melo MN, van Eerden FJ, Arnarez C, López CA, Wassenaar TA, et al. Lipid organization of the plasma membrane. J Am Chem Soc. 2014;136(41):14554–9.

    Article  PubMed  CAS  Google Scholar 

  97. Koldsø H, Sansom MSP. Organization and dynamics of receptor proteins in a plasma membrane. J Am Chem Soc. 2015;137(46):14694–704.

    Article  PubMed  CAS  Google Scholar 

  98. Periole X, Huber T, Marrink S-J, Sakmar TP. G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. J Am Chem Soc. 2007;129(33):10126–32.

    Article  CAS  PubMed  Google Scholar 

  99. Periole X, Knepp AM, Sakmar TP, Marrink SJ, Huber T. Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers. J Am Chem Soc. 2012;134(26):10959–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mondal S, Johnston JM, Wang H, Khelashvili G, Filizola M, Weinstein H. Membrane driven spatial organization of GPCRs. Sci Rep. 2013;3:2909.

    Google Scholar 

  101. Prasanna X, Chattopadhyay A, Sengupta D. Cholesterol modulates the dimer interface of the β2-adrenergic receptor via cholesterol occupancy sites. Biophys J. 2014;106(6):1290–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ghosh A, Sonavane U, Joshi R. Multiscale modelling to understand the self-assembly mechanism of human β2-adrenergic receptor in lipid bilayer. Comput Biol Chem. 2014;48:29–39.

    Article  CAS  PubMed  Google Scholar 

  103. Provasi D, Boz MB, Johnston JM, Filizola M. Preferred supramolecular organization and dimer interfaces of opioid receptors from simulated self-association. PLoS Comp Biol. 2015;11(3):e1004148.

    Article  CAS  Google Scholar 

  104. Guixà-González R, Javanainen M, Gómez-Soler M, Cordobilla B, Domingo JC, Sanz F, et al. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors. Sci Rep. 2016;6:19839.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Wassenaar TA, Pluhackova K, Moussatova A, Sengupta D, Marrink SJ, Tieleman DP, et al. High-throughput simulations of dimer and trimer assembly of membrane proteins. The DAFT approach. J Chem Theory Comput. 2015;11(5):2278–91.

    Article  CAS  PubMed  Google Scholar 

  106. Casuso I, Khao J, Chami M, Paul-Gilloteaux P, Husain M, Duneau J-P, et al. Characterization of the motion of membrane proteins using high-speed atomic force microscopy. Nat Nanotechnol. 2012;7(8):525–9.

    Article  CAS  PubMed  Google Scholar 

  107. Parton DL, Klingelhoefer JW, Sansom MSP. Aggregation of model membrane proteins, modulated by hydrophobic mismatch, membrane curvature, and protein class. Biophys J. 2011;101(3):691–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Torrie GM, Valleau JP. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys. 1977;23(2):187–99.

    Article  Google Scholar 

  109. Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA. The weighted histogram analysis method for free-energy calculations on biomolecules I. The method. J Comput Chem. 1992;13(8):1011–21.

    Article  CAS  Google Scholar 

  110. Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA. Multidimensional free-energy calculations using the weighted histogram analysis method. J Comput Chem. 1995;16(11):1339–50.

    Article  CAS  Google Scholar 

  111. Roux B. The calculation of the potential of mean force using computer simulations. Comput Phys Commun. 1995;91(1–3):275–82.

    Google Scholar 

  112. Killian JA. Hydrophobic mismatch between proteins and lipids in membranes. Biochim Biophys Acta Rev Biomembr. 1998;1376(3):401–16.

    Article  CAS  Google Scholar 

  113. Mondal S, Khelashvili G, Shan J, Andersen OS, Weinstein H. Quantitative modeling of membrane deformations by multihelical membrane proteins: application to G-protein coupled receptors. Biophys J. 2011;101(9):2092–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Filipek S, Krzysko KA, Fotiadis D, Liang Y, Saperstein DA, Engel A, et al. A concept for G protein activation by G protein-coupled receptor dimers: the transducin/rhodopsin interface. Photochem Photobiol Sci. 2004;3(6):628–38.

    Google Scholar 

  115. Chabre M, Cone R, Saibil H. Biophysics: is rhodopsin dimeric in native retinal rods? Nature. 2003;426(6962):30–1.

    Article  CAS  PubMed  Google Scholar 

  116. Schertler GF, Hargrave PA. Projection structure of frog rhodopsin in two crystal forms. Proc Natl Acad Sci U S A. 1995;92(25):11578–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ruprecht JJ, Mielke T, Vogel R, Villa C, Schertler GFX. Electron crystallography reveals the structure of metarhodopsin I. EMBO J. 2004;23(18):3609–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Choe HW, Kim YJ, Park JH, Morizumi T, Pai EF, Krauss N, et al. Crystal structure of metarhodopsin II. Nature. 2011;471(7340):651–5.

    Article  CAS  PubMed  Google Scholar 

  119. Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature. 2008;454(7201):183–7.

    Article  CAS  PubMed  Google Scholar 

  120. Salom D, Lodowski DT, Stenkamp RE, Le Trong I, Golczak M, Jastrzebska B, et al. Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc Natl Acad Sci U S A. 2006;103(44):16123–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Knepp AM, Periole X, Marrink S-J, Sakmar TP, Huber T. Rhodopsin forms a dimer with cytoplasmic helix 8 contacts in native membranes. Biochemistry. 2012;51(9):1819–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science. 2007;318(5854):1258–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola V-P, Chien EYT, et al. A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure. 2008;16(6):897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, et al. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science. 2014;344(6179):58–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Barducci A, Bussi G, Parrinello M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett. 2008;100(2):020603.

    Article  PubMed  CAS  Google Scholar 

  126. Guo W, Urizar E, Kralikova M, Mobarec JC, Shi L, Filizola M, et al. Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J. 2008;27(17):2293–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Provasi D, Johnston JM, Filizola M. Lessons from free energy simulations of delta-opioid receptor homodimers involving the fourth transmembrane helix. Biochemistry. 2010;49(31):6771–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Johnston JM, Aburi M, Provasi D, Bortolato A, Urizar E, Lambert NA, et al. Making structural sense of dimerization interfaces of delta opioid receptor homodimers. Biochemistry. 2011;50(10):1682–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Periole X, Cavalli M, Marrink S-J, Ceruso MA. Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J Chem Theory Comput. 2009;5(9):2531–43.

    Article  CAS  PubMed  Google Scholar 

  130. Johnston JM, Filizola M. Differential stability of the crystallographic interfaces of Mu- and Kappa-opioid receptors. PLoS One. 2014;9(2):e90694.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Johnston JM, Wang H, Provasi D, Filizola M. Assessing the relative stability of dimer interfaces in g protein-coupled receptors. PLoS Comp Biol. 2012;8(8):e1002649.

    Article  CAS  Google Scholar 

  132. Grouleff J, Irudayam SJ, Skeby KK, Schiøtt B. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim Biophys Acta. 2015;1848(9):1783–95.

    Article  CAS  PubMed  Google Scholar 

  133. Brown MF. Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids. 1994;73(1–2):159–80.

    Google Scholar 

  134. Mitchell DC, Straume M, Miller JL, Litman BJ. Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids. Biochemistry. 1990;29(39):9143–9.

    Article  CAS  PubMed  Google Scholar 

  135. Paila YD, Chattopadhyay A. Membrane cholesterol in the function and organization of G-protein coupled receptors. Subcell Biochem. 2010;51(Chapter 16):439–66.

    Google Scholar 

  136. Paila YD, Tiwari S, Chattopadhyay A. Are specific nonannular cholesterol binding sites present in G-protein coupled receptors? BBA-Biomembranes. 2009;1788(2):295–302.

    Article  CAS  PubMed  Google Scholar 

  137. Gimpl G, Burger K, Fahrenholz F. A closer look at the cholesterol sensor. Trends Biochem Sci. 2002;27(12):596–9.

    Article  CAS  PubMed  Google Scholar 

  138. Jafurulla M, Tiwari S, Chattopadhyay A. Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors. Biochem Biophys Res Commun. 2011;404(1):569–73.

    Article  CAS  PubMed  Google Scholar 

  139. Yeagle PL. Non-covalent binding of membrane lipids to membrane proteins. BBA-Biomembranes. 2014;1838(6):1548–59.

    Article  CAS  PubMed  Google Scholar 

  140. Burger K, Gimpl G, Fahrenholz F. Regulation of receptor function by cholesterol. Cell Mol Life Sci. 2000;57(11):1577–92.

    Article  CAS  PubMed  Google Scholar 

  141. Niu SL, Mitchell DC, Litman BJ. Manipulation of cholesterol levels in rod disk membranes by methyl-b-cyclodextrin: effects on receptor activation. J Biol Chem. 2002;277(23):20139–45.

    Article  CAS  PubMed  Google Scholar 

  142. Oates J, Watts A. Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr Opin Struct Biol. 2011;21(6):802–7.

    Article  CAS  PubMed  Google Scholar 

  143. Sengupta D, Chattopadhyay A. Identification of cholesterol binding sites in the serotonin 1Areceptor. J Phys Chem B. 2012;116(43):12991–6.

    Article  CAS  PubMed  Google Scholar 

  144. Zhang M, Mileykovskaya E, Dowhan W. Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem. 2002;277(46):43553–6.

    Article  CAS  PubMed  Google Scholar 

  145. Fabelo N, Martín V, Santpere G, Marín R, Torrent L, Ferrer I, et al. Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson’s disease and incidental Parkinson’s disease. Mol Med (Cambridge, MA). 2011;17(9–10):1107–18.

    Google Scholar 

  146. Martín V, Fabelo N, Santpere G, Puig B, Marín R, Ferrer I, et al. Lipid alterations in lipid rafts from Alzheimer’s disease human brain cortex. J Alzheimer Dis. 2010;19(2):489–502.

    Google Scholar 

  147. Taha AY, Cheon Y, Ma K, Rapoport SI, Rao JS. Altered fatty acid concentrations in prefrontal cortex of schizophrenic patients. J Psychiatr Res. 2013;47(5):636–43.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Feller SE, Gawrisch K, Woolf TB. Rhodopsin exhibits a preference for solvation by polyunsaturated docosohexaenoic acid. J Am Chem Soc. 2003;125(15):4434–5.

    Article  CAS  PubMed  Google Scholar 

  149. Grossfield A, Feller SE, Pitman MC. Contribution of omega-3 fatty acids to the thermodynamics of membrane protein solvation. J Phys Chem B. 2006;110(18):8907–9.

    Article  CAS  PubMed  Google Scholar 

  150. Grossfield A, Feller SE, Pitman MC. A role for direct interactions in the modulation of rhodopsin by omega-3 polyunsaturated lipids. Proc Natl Acad Sci U S A. 2006;103(13):4888–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Litman BJ, Niu SL, Polozova A, Mitchell DC. The role of docosahexaenoic acid containing phospholipids in modulating G protein-coupled signaling pathways: visual transduction. J Mol Neurosc. 2001;16(2–3):237–42- discussion 79–84.

    Google Scholar 

  152. Mitchell DC, Niu S-L, Litman BJ. Enhancement of G protein-coupled signaling by DHA phospholipids. Lipids. 2003;38(4):437–43.

    Article  CAS  PubMed  Google Scholar 

  153. Mitchell DC, Straume M, Litman BJ. Role of sn-1-saturated,sn-2-polyunsaturated phospholipids in control of membrane receptor conformational equilibrium: effects of cholesterol and acyl chain unsaturation on the metarhodopsin I in equilibrium with metarhodopsin II equilibrium. Biochemistry 1992;31(3):662–670.

    Google Scholar 

  154. Soubias O, Gawrisch K. The role of the lipid matrix for structure and function of the GPCR rhodopsin. Biochim Biophys Acta. 2012;1818(2):234–40.

    Article  CAS  PubMed  Google Scholar 

  155. Guo W, Shi L, Javitch JA. The fourth transmembrane segment forms the interface of the dopamine D2 receptor homodimer. J Biol Chem. 2003;278(7):4385–8.

    Article  CAS  PubMed  Google Scholar 

  156. Vidi P-A, Chen J, Irudayaraj JMK, Watts VJ. Adenosine A(2A) receptors assemble into higher-order oligomers at the plasma membrane. FEBS Lett. 2008;582(29):3985–90.

    Article  CAS  PubMed  Google Scholar 

  157. Zawarynski P, Tallerico T, Seeman P, Lee SP, O’Dowd BF, George SR. Dopamine D2 receptor dimers in human and rat brain. FEBS Lett. 1998;441(3):383–6.

    Article  CAS  PubMed  Google Scholar 

  158. Ferré S, Ciruela F, Canals M, Marcellino D, Burgueno J, Casadó V, et al. Adenosine A2A-dopamine D2 receptor-receptor heteromers. Targets for neuro-psychiatric disorders. Parkinsonism Relat Disord. 2004;10(5):265–71.

    Google Scholar 

  159. Fuxe K, Marcellino D, Genedani S, Agnati L. Adenosine A(2A) receptors, dopamine D(2) receptors and their interactions in Parkinson’s disease. Movement Disord. 2007;22(14):1990–2017.

    Google Scholar 

  160. Jorg M, Scammells PJ, Capuano B. The dopamine D2 and adenosine A2A receptors: past, present and future trends for the treatment of Parkinson's disease. Curr Med Chem. 2014;21(27):3188–210.

    Article  CAS  PubMed  Google Scholar 

  161. Huber T, Botelho AV, Beyer K, Brown MF. Membrane model for the G-protein-coupled receptor rhodopsin: hydrophobic interface and dynamical structure. Biophys J. 2004;86(4):2078–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Khelashvili G, Grossfield A, Feller SE, Pitman MC, Weinstein H. Structural and dynamic effects of cholesterol at preferred sites of interaction with rhodopsin identified from microsecond length molecular dynamics simulations. Prot Struct Funct Bioinform. 2009;76(2):403–17.

    Article  CAS  Google Scholar 

  163. Olausson BES, Grossfield A, Pitman MC, Brown MF, Feller SE, Vogel A. Molecular dynamics simulations reveal specific interactions of post-translational palmitoyl modifications with rhodopsin in membranes. J Am Chem Soc. 2012;134(9):4324–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Pitman MC, Grossfield A, Suits F, Feller SE. Role of cholesterol and polyunsaturated chains in lipid−protein interactions: molecular dynamics simulation of rhodopsin in a realistic membrane environment. J Am Chem Soc. 2005;127(13):4576–7.

    Article  CAS  PubMed  Google Scholar 

  165. Niu SL, Mitchell DC, Litman BJ. Optimization of receptor-G protein coupling by bilayer lipid composition II: formation of metarhodopsin II-transducin complex. J Biol Chem. 2001;276(46):42807–11.

    Article  CAS  PubMed  Google Scholar 

  166. Botelho AV, Gibson NJ, Thurmond RL, Wang Y, Brown MF. Conformational energetics of rhodopsin modulated by nonlamellar-forming lipids. Biochemistry. 2002;41(20):6354–68.

    Article  CAS  PubMed  Google Scholar 

  167. Brown MF. Inuence of nonlamellar-forming lipids on rhodopsin. 44: Current topics in membranes; 1997. P. 285–356.

    Google Scholar 

  168. Delange F, Merkx M, Bovee-Geurts PH, Pistorius AM, Degrip WJ. Modulation of the metarhodopsin I/metarhodopsin II equilibrium of bovine rhodopsin by ionic strength--evidence for a surface-charge effect. European J Biochem/FEBS. 1997;243(1–2):174–80.

    Google Scholar 

  169. Gibson NJ, Brown MF. Lipid headgroup and acyl chain composition modulate the MI-MII equilibrium of rhodopsin in recombinant membranes. Biochemistry. 1993;32(9):2438–54.

    Article  CAS  PubMed  Google Scholar 

  170. Soubias O, Gawrisch K. Probing specific lipid−protein interaction by saturation transfer difference nmr spectroscopy. J Am Chem Soc. 2005;127(38):13110–1.

    Article  CAS  PubMed  Google Scholar 

  171. Soubias O, Niu S-L, Mitchell DC, Gawrisch K. Lipid−rhodopsin hydrophobic mismatch alters rhodopsin helical content. J Am Chem Soc. 2008;130(37):12465–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wang Y, Botelho AV, Martinez GV, Brown MF. Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction. J Am Chem Soc. 2002;124(26):7690–701.

    Article  CAS  PubMed  Google Scholar 

  173. Wiedmann TS, Pates RD, Beach JM, Salmon A, Brown MF. Lipid-protein interactions mediate the photochemical function of rhodopsin. Biochemistry. 1988;27(17):6469–74.

    Article  CAS  PubMed  Google Scholar 

  174. Soubias O, Gawrisch K. Rhodopsin-lipid interactions studied By NMR. Methods Enzymol. 2013;522:209–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Mitchell DC, Gawrisch K, Litman BJ, Salem N. Why is docosahexaenoic acid essential for nervous system function? Biochem Soc Trans. 1998;26(3):365–70.

    Article  CAS  PubMed  Google Scholar 

  176. Mitchell DC, Litman BJ. Molecular order and dynamics in bilayers consisting of highly polyunsaturated phospholipids. Biophys J. 1998;74(2 Pt 1):879–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Niu S-L, Mitchell DC, Lim S-Y, Wen Z-M, Kim H-Y, Salem N, et al. Reduced G protein-coupled signaling efficiency in retinal rod outer segments in response to n-3 fatty acid deficiency. J Biol Chem. 2004;279(30):31098–104.

    Article  CAS  PubMed  Google Scholar 

  178. Albert AD, Young JE, Yeagle PL. Rhodopsin-cholesterol interactions in bovine rod outer segment disk membranes. Biochim Biophys Acta. 1996;1285(1):47–55.

    Article  PubMed  Google Scholar 

  179. Boesze-Battaglia K, Albert AD. Fatty acid composition of bovine rod outer segment plasma membrane. Exp Eye Res. 1989;49(4):699–701.

    Article  CAS  PubMed  Google Scholar 

  180. Boesze-Battaglia K, Hennessey T, Albert AD. Cholesterol heterogeneity in bovine rod outer segment disk membranes. J Biol Chem. 1989;264(14):8151–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Miljanich GP, Nemes PP, White DL, Dratz EA. The asymmetric transmembrane distribution of phosphatidylethanolamine, phosphatidylserine, and fatty acids of the bovine retinal rod outer segment disk membrane. J Membr Biol. 1981;60(3):249–55.

    Article  CAS  PubMed  Google Scholar 

  182. Miljanich GP, Sklar LA, White DL, Dratz EA. Disaturated and dipolyunsaturated phospholipids in the bovine retinal rod outer segment disk membrane. Biochim Biophys Acta. 1979;552(2):294–306.

    Article  CAS  PubMed  Google Scholar 

  183. Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V. The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J Mol Biol. 2004;342(2):571–83.

    Article  CAS  PubMed  Google Scholar 

  184. Lee JY, Lyman E. Predictions for cholesterol interaction sites on the A 2A Adenosine receptor. J Am Chem Soc. 2012;134(40):16512–5.

    Article  CAS  PubMed  Google Scholar 

  185. Cang X, Du Y, Mao Y, Wang Y, Yang H, Jiang H. Mapping the functional binding sites of cholesterol in β2-adrenergic receptor by long-time molecular dynamics simulations. J Phys Chem B. 2013;117(4):1085–94.

    Article  CAS  PubMed  Google Scholar 

  186. Cang X, Yang L, Yang J, Luo C, Zheng M, Yu K, et al. Cholesterol-β 1AR interaction versus cholesterol-β 2AR interaction. Prot Struct Funct Bioinform. 2013;82(5):760–70.

    Article  CAS  Google Scholar 

  187. Lyman E, Higgs C, Kim B, Lupyan D, Shelley JC, Farid R, et al. a role for a specific cholesterol interaction in stabilizing the apo configuration of the human A2A adenosine receptor. Structure. 2009;17(12):1660–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Arnarez C, Marrink SJ, Periole X. Molecular mechanism of cardiolipin-mediated assembly of respiratory chain supercomplexes. Chem Sci. 2016;7:4435–43.

    Article  CAS  Google Scholar 

  189. Invergo BM, Dell’Orco D, Montanucci L, Koch K-W, Bertranpetit J. A comprehensive model of the phototransduction cascade in mouse rod cells. Mol BioSyst. 2014;10(6):1481–9.

    Article  CAS  PubMed  Google Scholar 

  190. Cangiano L, Dell’Orco D. Detecting single photons: a supramolecular matter? FEBS Lett. 2012;587(1):1–4.

    Article  PubMed  CAS  Google Scholar 

  191. Dell’Orco D, Koch K-W. A dynamic scaffolding mechanism for rhodopsin and transducin interaction in vertebrate vision. Biochem J. 2011;440(2):263–71.

    Article  PubMed  CAS  Google Scholar 

  192. Dell’Orco D. A physiological role for the supramolecular organization of rhodopsin and transducin in rod photoreceptors. FEBS Lett. 2013;587(13):2060–6.

    Google Scholar 

  193. Jastrzebska B, Tsybovsky Y, Palczewski K. Complexes between photoactivated rhodopsin and transducin: progress and questions. Biochem J. 2010;428(1):1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Jastrzebska B. GPCR: G protein complexes—the fundamental signaling assembly. Amino Acids. 2013;45(6):1303–14.

    Article  CAS  PubMed  Google Scholar 

  195. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, et al. Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature. 2012;485(7398):321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Xue L, Rovira X, Scholler P, Zhao H, Liu J, Pin J-P, et al. Major ligand-induced rearrangement of the heptahelical domain interface in a GPCR dimer. Nat Chem Biol. 2015;11(2):134–40.

    Article  CAS  PubMed  Google Scholar 

  197. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, et al. Crystal structure of the β(2) adrenergic receptor-Gs protein complex. Nature. 2011;477(7366):549–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas P. Sakmar M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sakmar, T.P., Periole, X., Huber, T. (2017). Probing Self-Assembly of G Protein-Coupled Receptor Oligomers in Membranes Using Molecular Dynamics Modeling and Experimental Approaches. In: Herrick-Davis, K., Milligan, G., Di Giovanni, G. (eds) G-Protein-Coupled Receptor Dimers. The Receptors, vol 33. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60174-8_15

Download citation

Publish with us

Policies and ethics