Skip to main content
Log in

Sequence and structural investigation of a novel psychrophilic α-amylase from Glaciozyma antarctica PI12 for cold-adaptation analysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A novel α-amylase was isolated successfully from Glaciozyma antarctica PI12 using DNA walking and reverse transcription-polymerase chain reaction (RT-PCR) methods. The structure of this psychrophilic α-amylase (AmyPI12) from G. antarctica PI12 has yet to be studied in detail. A 3D model of AmyPI12 was built using a homology modelling approach to search for a suitable template and to generate an optimum target–template alignment, followed by model building using MODELLER9.9. Analysis of the AmyPI12 model revealed the presence of binding sites for a conserved calcium ion (CaI), non-conserved calcium ions (CaII and CaIII) and a sodium ion (Na). Compared with its template—the thermostable α-amylase from Bacillus stearothermophilus (BSTA)—the binding of CaII, CaIII and Na ions in AmyPI12 was observed to be looser, which suggests that the low stability of AmyPI12 allows the protein to work at different temperature scales. The AmyPI12 amino acid sequence and model were compared with thermophilic α-amylases from Bacillus species that provided the highest structural similarities with AmyPI12. These comparative studies will enable identification of possible determinants of cold adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a,b
Fig. 6

Similar content being viewed by others

References

  1. Gianese G, Bossa F, Pascarella S (2002) Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes. Proteins Struct Funct Bioinform 47:236–249

    Article  CAS  Google Scholar 

  2. Zecchinon L, Claverie P, Collins T, D’Amico S, Delille D, Feller G et al (2001) Did psychrophilic enzymes really win the challenge? Extremophiles 5:313–321

    Article  CAS  Google Scholar 

  3. Ramli A, Mahadi N, Shamsir M, Rabu A, Joyce-Tan K, Murad A et al (2012) Structural prediction of a novel chitinase from the psychrophilic Glaciozyma antarctica PI12 and an analysis of its structural properties and function. J Comput Aided Mol Des 26:947–961

    Article  CAS  Google Scholar 

  4. Lu M, Wang S, Fang Y, Li H, Liu S, Liu H (2010) Cloning, expression, purification, and characterization of cold-adapted α-amylase from Pseudoalteromonas arctica GS230. Protein J 29:591–597

    Article  CAS  Google Scholar 

  5. Machius M, Declerck N, Huber R, Wiegand G (1998) Activation of Bacillus licheniformis α-amylase through a disorder order transition of the substrate-binding site mediated by a calcium sodium calcium metal triad. Structure 6:281–292

    Article  CAS  Google Scholar 

  6. van der Maarel MJEC, van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94:137–155

    Article  Google Scholar 

  7. Kuddus M, Roohi, Arif MJ, Ramteke WP (2012) Structural adaptation and biocatalytic prospective of microbial cold-active α-amylase. Afr J Microbiol Res 6:206–213

    CAS  Google Scholar 

  8. D’Amico S, Gerday C, Feller G (2003) Temperature adaptation of proteins: engineering mesophilic-like activity and stability in a cold-adapted α-amylase. J Mol Biol 332:981–988

    Article  Google Scholar 

  9. Aghajari N, Feller G, Gerday C, Haser R (1998) Structures of the psychrophilic Alteromonas haloplanctis α-amylase give insights into cold adaptation at a molecular level. Structure 6:1503–1516

    Article  CAS  Google Scholar 

  10. Zhang J-W, Zeng R-Y (2008) Purification and characterization of a cold-adapted α-amylase produced by Nocardiopsis sp. 7326 isolated from Prydz Bay, Antarctic. Mar Biotechnol 10:75–82

    Article  Google Scholar 

  11. Tapia-Tussell R, Lappe P, Ulloa M, Quijano-Ramayo A, Cáceres-Farfán M, Larqué-Saavedra A et al (2006) A rapid and simple method for DNA extraction from yeasts and fungi isolated from Agave fourcroydes. Mol Biotechnol 33:67–70

    CAS  Google Scholar 

  12. Sokolovsky VY, Kaldenhoff R, Ricci M, Russo VEA (1990) Fast and reliable mini-prep RNA extraction from Neurospora crassa. Fungal Genet Newslett 37:39–40

    Google Scholar 

  13. Stanke M, Morgenstern B (2005) AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33:W465–W467

    Article  CAS  Google Scholar 

  14. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  15. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  16. Gasteiger E, Hoogland C, Gattiker A, Duvaud SE, Wilkins MR, Appel RD et al (2005) Protein identification and analysis tools on the ExPASy server. In: John MW (ed) The proteomics protocols handbook. Humana, Totowa, pp 571–607

    Chapter  Google Scholar 

  17. Bendtsen JD, Nielsen H, Heijne GV, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  Google Scholar 

  18. Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313:903–919

    Article  CAS  Google Scholar 

  19. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  20. Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. In: Current protocols in bioinformatics. Wiley, New York

  21. Kelley LA, Sternberg MJE (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  Google Scholar 

  22. Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248

    Article  Google Scholar 

  23. Fornes O, Aragues R, Espadaler J, Marti-Renom MA, Sali A, Oliva B (2009) ModLink+: improving fold recognition by using protein-protein interactions. Bioinformatics 25:1506–1512

    Article  CAS  Google Scholar 

  24. Eswar N, Webb B, Marti-Renom M, Madhusudhan MS, Eramian D, Shen M-Y et al (2007) Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci 2:1–30

    Google Scholar 

  25. Guex N, Peitsch M (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  26. Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  CAS  Google Scholar 

  27. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519

    Article  CAS  Google Scholar 

  28. Tomii K, Hirokawa T, Motono C (2005) Protein structure prediction using a variety of profile libraries and 3D verification. Proteins Structure Function Bioinform 61:114–121

    Article  CAS  Google Scholar 

  29. Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–170

    Article  CAS  Google Scholar 

  30. Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85

    Article  CAS  Google Scholar 

  31. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D et al (2009) InterPro: the integrative protein signature database. Nucleic Acids Res 37:D211–D215

    Article  CAS  Google Scholar 

  32. Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M et al (2007) CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 35:D237–D240

    Article  CAS  Google Scholar 

  33. Gan Z, Yang J, Tao N, Liang L, Mi Q, Li J et al (2007) Cloning of the gene Lecanicillium psalliotae chitinase Lpchi1 and identification of its potential role in the biocontrol of root-knot nematode Meloidogyne incognita. Appl Microbiol Biotechnol 76:1309–1317

    Article  CAS  Google Scholar 

  34. Kawase T, Saito A, Sato T, Kanai R, Fujii T, Nikaidou N et al (2004) Distribution and phylogenetic analysis of family 19 chitinases in Actinobacteria. Appl Environ Microbiol 70:1135–1144

    Article  CAS  Google Scholar 

  35. Orikoshi H, Baba N, Nakayama S, Kashu H, Miyamoto K, Yasuda M et al (2003) Molecular analysis of the gene encoding a novel cold-adapted chitinase (ChiB) from a marine bacterium, Alteromonas sp. Strain O-7. J Bacteriol 185:1153–1160

    Article  CAS  Google Scholar 

  36. Wahab H, Ahmad Khairudin N, Samian M, Najimudin N (2006) Sequence analysis and structure prediction of type II Pseudomonas sp. USM 4–55 PHA synthase and an insight into its catalytic mechanism. BMC Struct Biol 6:23

    Article  Google Scholar 

  37. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99

    Article  CAS  Google Scholar 

  38. Matsuura Y, Kusunoki M, Harada W, Tanaka N, Iga Y, Yasuoka N et al (1980) Molecular structure of Taka-Amylase A: I. Backbone chain folding at 3 A resolution. J Biochem 87:1555–1558

    CAS  Google Scholar 

  39. Robert X, Haser R, Mori H, Svensson B, Aghajari N (2005) Oligosaccharide binding to barley α-amylase 1. J Biol Chem 280:32968–32978

    Article  CAS  Google Scholar 

  40. Declerck N, Machius M, Wiegand G, Huber R, Gaillardin C (2000) Probing structural determinants specifying high thermostability in Bacillus licheniformis α-amylase. J Mol Biol 301:1041–1057

    Article  CAS  Google Scholar 

  41. Ben Abdelmalek I, Urdaci MC, Ben Ali M, Denayrolles M, Chaignepain S, Limam F et al (2009) Structural investigation and homology modeling studies of native and truncated forms of α-amylases from Sclerotinia sclerotiorum. J Microbiol Biotechnol 19:1306–1318

    Article  CAS  Google Scholar 

  42. Kanai R, Haga K, Akiba T, Yamane K, Harata K (2004) Biochemical and crystallographic analyses of maltohexaose-producing amylase from alkalophilic Bacillus sp. 707. Biochemistry 43:14047–14056

    Article  CAS  Google Scholar 

  43. Oudjeriouat N, Moreau Y, Santimone M, Svensson B, Marchis-Mouren G, Desseaux V (2003) On the mechanism of α-amylase. Eur J Biochem 270:3871–3879

    Article  CAS  Google Scholar 

  44. Watanabe K, Miyake K, Suzuki Y (2001) Identification of catalytic and substrate-binding site residues in Bacillus cereus ATCC7064 oligo-1,6-glucosidase. Biosci Biotechnol Biochem 65:2058–2064

    Article  CAS  Google Scholar 

  45. Suvd D, Fujimoto Z, Takase K, Matsumura M, Mizuno H (2001) Crystal structure of Bacillus stearothermophilus α-amylase: possible factors determining the thermostability. J Biochem 129:461–468

    Article  CAS  Google Scholar 

  46. Feller G, Payan F, Theys F, Qian M, Haser R, Gerday C (1994) Stability and structural analysis of α-amylase from the antarctic psychrophile Alteromonas haloplanctis A23. Eur J Biochem 222:441–447

    Article  CAS  Google Scholar 

  47. Vihinen M, Mantsala P (1990) Characterization of a thermostable Bacillus stearothermophilus alpha-amylase. Biotechnol Appl Biochem 12:427–435

    CAS  Google Scholar 

  48. Okubo Y, Yokoigawa K, Esaki N, Soda K, Kawai H (1999) Characterization of psychrophilic alanine racemase from Bacillus psychrosaccharolyticus. Biochem Biophys Res Commun 256:333–340

    Article  CAS  Google Scholar 

  49. Schlatter D, Kriech O, Suter F, Zuber H (1987) Structure and function of L-lactate dehydrogenase from thermophilic, mesophilic and psychrophilic bacteria, VIII. The primary structure of the psychrophilic lactate dehydrogenase from Bacillus psychrosaccharolyticus. Biol Chem Hoppe Seyler 368:1435–1446

    Article  CAS  Google Scholar 

  50. Vckovski V, Schlatter D, Zuber H (1990) Structure and function of L-lactate dehydrogenases from thermophilic, mesophilic and psychrophilic bacteria, IX. Identification, isolation and nucleotide sequence of two L-lactate. dehydrogenase genes of the psychrophilic bacterium Bacillus psychrosaccharolyticus. Biol Chem Hoppe Seyler 371:103–110

    Article  CAS  Google Scholar 

  51. Kagawa M, Fujimoto Z, Momma M, Takase K, Mizuno H (2003) Crystal structure of Bacillus subtilis α-amylase in complex with acarbose. J Bacteriol 185:6981–6984

    Article  CAS  Google Scholar 

  52. Alikhajeh J, Khajeh K, Ranjbar B, Naderi-Manesh H, Lin Y-H, Liu E et al (2010) Structure of Bacillus amyloliquefaciens α-amylase at high resolution: implications for thermal stability. Acta Crystallogr F 66:121–129

    Article  CAS  Google Scholar 

  53. Joyet P, Declerck N, Gaillardin C (1992) Hyperthermostable variants of a highly thermostable alpha-amylase. Nat Biotechnol 10:1579–1583

    Article  CAS  Google Scholar 

  54. Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    Article  CAS  Google Scholar 

  55. Watanabe S, Yasutake Y, Tanaka I, Takada Y (2005) Elucidation of stability determinants of cold-adapted monomeric isocitrate dehydrogenase from a psychrophilic bacterium, Colwellia maris, by construction of chimeric enzymes. Microbiology 151:1083–1094

    Article  CAS  Google Scholar 

  56. Wallon G, Lovett S, Magyar C, Svingor A, Szilagyi A, Zavodszky P et al (1997) Sequence and homology model of 3-isopropylmalate dehydrogenase from the psychrotrophic bacterium Vibrio sp. I5 suggest reasons for thermal instability. Protein Eng 10:665–672

    Article  CAS  Google Scholar 

  57. Galkin A, Kulakova L, Ashida H, Sawa Y, Esaki N (1999) Cold-adapted alanine dehydrogenases from two Antarctic bacterial strains: gene cloning, protein characterization, and comparison with mesophilic and thermophilic counterparts. Appl Environ Microbiol 65:4014–4020

    CAS  Google Scholar 

  58. Feller G, Arpigny JL, Narinx E, Gerday C (1997) Molecular adaptations of enzymes from psychrophilic organisms. Comp Biochem Physiol A Physiol 118:495–499

    Article  Google Scholar 

  59. Herning T, Yutani K, Inaka K, Kuroki R, Matsushima M, Kikuchi M (1992) Role of proline residues in human lysozyme stability: a scanning calorimetric study combined with x-ray structure analysis of proline mutants. Biochemistry 31:7077–7085

    Article  CAS  Google Scholar 

  60. Davail S, Feller G, Narinx E, Gerday C (1994) Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile subtilisin from the antarctic psychrophile Bacillus TA41. J Biol Chem 269:17448–17453

    CAS  Google Scholar 

  61. Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841

    Article  CAS  Google Scholar 

  62. Garsoux G, Lamotte J, Gerday C, Feller G (2004) Kinetic and structural optimization to catalysis at low temperatures in a psychrophilic cellulase from the Antarctic bacterium Pseudoalteromonas haloplanktis. Biochem J 384:247–253

    Article  CAS  Google Scholar 

  63. Feller G (2003) Molecular adaptations to cold in psychrophilic enzymes. Cell Mol Life Sci 60:648–662

    Article  CAS  Google Scholar 

  64. Bae E, Phillips GN (2004) Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases. J Biol Chem 279:28202–28208

    Article  CAS  Google Scholar 

  65. Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A et al (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28:25–42

    Article  CAS  Google Scholar 

  66. Paredes D, Watters K, Pitman D, Bystroff C, Dordick J (2011) Comparative void-volume analysis of psychrophilic and mesophilic enzymes: structural bioinformatics of psychrophilic enzymes reveals sources of core flexibility. BMC Struct Biol 11:1–9

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks to thank my colleagues Nazihah Abdul Hamid from the Universiti Teknologi Malaysia and Fathin Nur Syafiqah Jafri from the Universiti Putra Malaysia for their help and valuable discussions. This work was supported by a research grant from the Molecular Biology and Genomic Initiative Program of the Malaysia Genome Institute (Project No. 10-05-16-MB002 and 07-05-MGI-GMB014). We would also like to express our appreciation to the Malaysia Antarctic Research Programme for their support. Aizi Nor Mazila Ramli is a researcher of Universiti Teknologi Malaysia under the Post-Doctoral Fellowship Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosli Md. Illias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramli, A.N.M., Azhar, M.A., Shamsir, M.S. et al. Sequence and structural investigation of a novel psychrophilic α-amylase from Glaciozyma antarctica PI12 for cold-adaptation analysis. J Mol Model 19, 3369–3383 (2013). https://doi.org/10.1007/s00894-013-1861-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1861-5

Keywords

Navigation