Skip to main content
Log in

Incomplete mixing versus clathrate-like structures: A molecular view on hydrophobicity in methanol–water mixtures

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The underlying molecular mechanisms of macroscopic excess properties were studied by molecular dynamics simulations for different compositions of methanol–water mixtures. Structural data (nearest neighbor relationships, clustering analysis) and dynamic data (hydrogen bond lifetimes, rotational autocorrelation, translational diffusion) were evaluated. Nearest neighbor relationships provide quantitative evidence and a pictorial description of incomplete mixing at the molecular level as a source for mixture anomalies, while a comparative study of water surrounding methyl moieties versus water in the bulk-like environment provides evidence against the hydrophobicity model of clathrate-like hydration. Furthermore, the formation or breakdown of the system-wide hydrogen bonding network at a critical threshold of approximately equimolar mixture is perceived to separate the mixture system into two hydrogen bonding regimes: hydrogen-bonded water clusters embedded in methanol for mixtures with low water content and methanol molecules within a system-wide hydrogen-bonded water network for mixtures with high water content.

Structural and dynamic properties of methanol-water mixtures were studied by molecular dynamics simulations to identify the molecular mechanisms of hydrophobicity. Nearest neighbor relationships provide quantitative evidence of incomplete mixing as a source for mixture anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Soper AK, Dougan L, Crain J, Finney JL (2006) Excess entropy in alcohol-water solutions: a simple clustering explanation. J Phys Chem B 110(8):3472–3476

    Article  CAS  Google Scholar 

  2. Chandler D (2002) Hydrophobicity: two faces of water. Nature 417(6888):491–491

    Article  CAS  Google Scholar 

  3. Galli G (2007) Dissecting hydrophobicity. Proc Natl Acad Sci U S A 104(8):2557–2558

    Article  CAS  Google Scholar 

  4. Jones JE (1924) On the determination of molecular fields. II. From the equation of state of a gas. Proc R Soc Lond A Math Phys Sci, Containing papers of a mathematical and physical character. 106(738):463–477

    Article  CAS  Google Scholar 

  5. Frank HS, Evans MW (1945) Free volume and entropy in condensed systems.3. Entropy in binary liquid mixtures—partial molal entropy in dilute solutions—structure and thermodynamics in aqueous electrolytes. J Chem Phys 13(11):507–532

    Article  CAS  Google Scholar 

  6. Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1–63

    Article  CAS  Google Scholar 

  7. Dixit S, Poon WCK, Crain J (2000) Hydration of methanol in aqueous solutions: a Raman spectroscopic study. J Phys Condens Matter 12(21):323–328

    Article  Google Scholar 

  8. Soper AK, Finney JL (1993) Hydration of methanol in aqueous-solution. Phys Rev Lett 71(26):4346–4349

    Article  CAS  Google Scholar 

  9. Wakisaka A, Komatsu S, Usui Y (2001) Solute-solvent and solvent-solvent interactions evaluated through clusters isolated from solutions: preferential solvation in water-alcohol mixtures. J Mol Liq 90(1–3):175–184

    Article  CAS  Google Scholar 

  10. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  11. Meng EC, Kollman PA (1996) Molecular dynamics studies of the properties of water around simple organic solutes. J Phys Chem 100(27):11460–11470

    Article  CAS  Google Scholar 

  12. Morrone JA, Hasllinger KE, Tuckerman ME (2006) Ab initio molecular dynamics simulation of the structure and proton transport dynamics of methanol—water solutions. J Phys Chem B 110(8):3712–3720. doi:10.1021/jp0554036

    Article  CAS  Google Scholar 

  13. van Erp TS, Meijer EJ (2001) Hydration of methanol in water. A DFT-based molecular dynamics study. Chem Phys Lett 333(3–4):290–296

    Article  Google Scholar 

  14. Dixit S, Crain J, Poon WCK, Finney JL, Soper AK (2002) Molecular segregation observed in a concentrated alcohol-water solution. Nature 416(6883):829–832

    Article  CAS  Google Scholar 

  15. Finney JL, Bowron DT, Daniel RM, Timmins P, Roberts MA (2003) Molecular and mesoscale structures in hydrophobically driven aqueous solutions. Biophys Chem 105(2–3):391–409. doi:10.1016/s0301-4622(03)00104-2

    Article  CAS  Google Scholar 

  16. Guo JH, Luo Y, Augustsson A, Kashtanov S, Rubensson JE, Shuh DK, Agren H, Nordgren J (2003) Molecular structure of alcohol-water mixtures. Phys Rev Lett 91(15)

  17. Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  18. Hockney RW, Goel SP, Eastwood JW (1974) Quiet high-resolution computer models of a plasma. J Comput Phys 14(2):148–158

    Article  Google Scholar 

  19. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical-integration of cartesian equations of motion of a system with constraints—molecular-dynamics of n-Alkanes. J Comput Phys 23(3):327–341

    Article  CAS  Google Scholar 

  20. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    Article  CAS  Google Scholar 

  21. York DM, Darden TA, Pedersen LG (1993) The effect of long-range electrostatic interactions in simulations of macromolecular crystals—a comparison of the Ewald and truncated list methods. J Chem Phys 99(10):8345–8348

    Article  CAS  Google Scholar 

  22. Jorgensen WL, Maxwell DS, TiradoRives J (1996) Development and testing of the OPLS All-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236

    Article  CAS  Google Scholar 

  23. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

    Article  CAS  Google Scholar 

  24. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: Fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  Google Scholar 

  25. Dzugutov M (2001) A universal scaling law for atomic diffusion in condensed matter. Nature 411(6838):720–720

    Article  CAS  Google Scholar 

  26. Allen M.P. TDJ (1987) Computer Simulations of Liquids Oxford University Press Inc, Oxford,

  27. Luzar A (2000) Resolving the hydrogen bond dynamics conundrum. J Chem Phys 113(23):10663–10675

    Article  CAS  Google Scholar 

  28. Rapaport DC (1983) Hydrogen-bonds in water network organization and lifetimes. Mol Phys 50(5):1151–1162

    Article  CAS  Google Scholar 

  29. van der Spoel D, van Maaren PJ, Berendsen HJC (1998) A systematic study of water models for molecular simulation: derivation of water models optimized for use with a reaction field. J Chem Phys 108(24):10220–10230

    Article  Google Scholar 

  30. Halle B, Wennerstrom H (1981) Interpretation of magnetic-resonance data from water nuclei in heterogeneous systems. J Chem Phys 75(4):1928–1943

    Article  CAS  Google Scholar 

  31. Struis R, Debleijser J, Leyte JC (1987) Dynamic behavior and some of the molecular properties of water molecules in pure water and in MgCl2 solutions. J Phys Chem 91(6):1639–1645

    Article  CAS  Google Scholar 

  32. Derlacki ZJ, Easteal AJ, Edge AVJ, Woolf LA, Roksandic Z (1985) Diffusion-coefficients of methanol and water and the mutual diffusion-coefficient in methanol water solutions at 278-K and 278-K. J Phys Chem 89(24):5318–5322

    Article  CAS  Google Scholar 

  33. Mikhail SZ, Kimel WR (1961) Densities and viscosities of methanol–water mixtures. J Chem Eng Data 6(4):533–537. doi:10.1021/je60011a015

    Article  CAS  Google Scholar 

  34. Wensink EJW, Hoffmann AC, van Maaren PJ, van der Spoel D (2003) Dynamic properties of water/alcohol mixtures studied by computer simulation. J Chem Phys 119(14):7308–7317. doi:10.1063/1.1607918

    Article  CAS  Google Scholar 

  35. Lankau T, Konrad O (2007) Hydrophobic solvation: aqueous methane solutions. J Chem Educ 84(5):864

    Article  Google Scholar 

  36. Bowron DT, Filipponi A, Roberts MA, Finney JL (1998) Hydrophobic hydration and the formation of a clathrate hydrate. Phys Rev Lett 81(19):4164–4167

    Article  CAS  Google Scholar 

  37. Titantah JT, Karttunen M (2012) Long-time correlations and hydrophobe-modified hydrogen-bonding dynamics in hydrophobic hydration. J Am Chem Soc 22:9362–9368

    Article  Google Scholar 

  38. Rezus YLA, Bakker HJ (2007) Observation of immobilized water molecules around hydrophobic groups. Phys Rev Lett 99(14):148301

    Article  CAS  Google Scholar 

  39. Jorgensen WL, Buckner JK (1987) Use of statistical perturbation-theory for computing solvent effects on molecular-conformation—butane in water. J Phys Chem 91(24):6083–6085

    Article  CAS  Google Scholar 

  40. Kincaid RH, Scheraga HA (1982) Acceleration of convergence in Monte-Carlo simulations of aqueous-solutions using the metropolis algorithm—hydrophobic hydration of methane. J Comput Chem 3(4):525–547

    Article  CAS  Google Scholar 

  41. Rosenberg RO, Mikkilineni R, Berne BJ (1982) Hydrophobic effect on chain folding—the trans to gauche isomerization of normal-butane in water. J Am Chem Soc 104(26):7647–7649

    Article  CAS  Google Scholar 

  42. Rossky PJ, Zichi DA (1982) Molecular librations and solvent orientational correlations in hydrophobic phenomena. Faraday Symp Chem Soc 17:69–78

    Article  Google Scholar 

  43. Rossky PJ, Friedman HL (1980) Benzene-benzene interaction in aqueous-solution. J Phys Chem 84(6):587–589

    Article  CAS  Google Scholar 

  44. Laage D, Stirnemann G, Hynes JT (2009) Why water reorientation slows without iceberg formation around hydrophobic solutes. J Phys Chem B 113(8):2428–2435

    Article  CAS  Google Scholar 

  45. Qvist J, Halle B (2008) Thermal signature of hydrophobic hydration dynamics. J Am Chem Soc 130(31):10345–10353

    Article  CAS  Google Scholar 

  46. Dzugutov M (1996) A universal scaling law for atomic diffusion in condensed matter. Nature 381(6578):137–139

    Article  CAS  Google Scholar 

  47. Pratt LR (2002) Molecular theory of hydrophobic effects: “She is too mean to have her name repeated”. Annu Rev Phys Chem 53:409–436

    Article  CAS  Google Scholar 

  48. Hummer G, Garde S, Garcia AE, Pratt LR (2000) New perspectives on hydrophobic effects. Chem Phys 258(2–3):349–370

    Article  CAS  Google Scholar 

  49. Blumberg RL, Stanley HE, Geiger A, Mausbach P (1984) Connectivity of hydrogen-bonds in liquid water. J Chem Phys 80(10):5230–5241

    Article  CAS  Google Scholar 

  50. Geiger A, Stillinger FH, Rahman A (1979) Aspects of the percolation process for hydrogen-bond networks in water. J Chem Phys 70(9):4185–4193

    Article  CAS  Google Scholar 

  51. Stanley HE, Teixeira J (1980) Interpretation of the unusual behavior of H2O and D2O at low-temperatures—tests of a percolation model. J Chem Phys 73(7):3404–3422

    Article  CAS  Google Scholar 

  52. Shante VKS, Kirkpatrick S (1971) Introduction to percolation theory. Adv Phys 20(85):325

    Article  Google Scholar 

  53. Dougan L, Bates SP, Hargreaves R, Fox JP, Crain J, Finney JL, Reat V, Soper AK (2004) Methanol–water solutions: a Bi-percolating liquid mixture. J Chem Phys 121(13):6456–6462. doi:10.1063/1.1789951

    Article  CAS  Google Scholar 

  54. Bako I, Megyes T, Balint S, Grosz T, Chihaia V (2008) Water–methanol mixtures: topology of hydrogen bonded network. Phys Chem Chem Phys 10(32):5004–5011. doi:10.1039/b808326f

    Article  CAS  Google Scholar 

  55. Sato T, Chiba A, Nozaki R (2000) Hydrophobic hydration and molecular association in methanol–water mixtures studied by microwave dielectric analysis. J Chem Phys 112(6):2924–2932

    Article  CAS  Google Scholar 

  56. Pascal TA, Goddard WA Hydrophobic segregation, phase transitions and the anomalous thermodynamics of water/methanol mixtures. J Phys Chem B 116 (47):13905–13912

  57. Haughney M, Ferrario M, McDonald IR (1987) Molecular-dynamics simulations of liquid methanol. J Phys Chem 91(19):4934–4940

    Article  CAS  Google Scholar 

  58. Yamaguchi T, Hidaka K, Soper AK (1999) The structure of liquid methanol revisited: a neutron diffraction experiment at −80 °C and +25 °C. Mol Phys 97(4):603–605

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Joachim Groß (University of Stuttgart) for helpful discussions. This work was funded by SimTech Cluster of Excellence at the University of Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Pleiss.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 726 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benson, S.P., Pleiss, J. Incomplete mixing versus clathrate-like structures: A molecular view on hydrophobicity in methanol–water mixtures. J Mol Model 19, 3427–3436 (2013). https://doi.org/10.1007/s00894-013-1857-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1857-1

Keywords

Navigation