Skip to main content
Log in

Structure of the Hydrogen-Bond Network in Binary Mixtures of Formamide and Methanol

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations in conjunction with a number of network analysis techniques have been carried out to explore the structure of the hydrogen-bond (H-bond) network in mixtures of formamide (FA) and methanol (MeOH) across the entire composition range. Radial distribution functions and pair energy distributions have been utilized for a general insight into the localized interactions. A comprehensive understanding of the structural properties of the H-bond networks including FA…FA, MeOH…MeOH, and FA…MeOH H-bonding interactions has been obtained collectively from the distribution of H-bonds, extended neighborhood analysis, and the geodesic distance distribution. These analyses indicate that formamide molecules prefer formamide molecules not only as immediate hydrogen-bonded neighbors but also as neighbors in their extended neighborhood that spans the neighbors of the immediate neighbors. Methanol molecules are found not to show a strong preference for either of the molecule types. The network analyses utilized in this study reveal that the population and the topological length of chain-like H-bond pathways formed by FA molecules increase with the addition of small amounts of methanol until the mole fractions of each species are equal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

taken from Ref. [33]

Fig. 12

Similar content being viewed by others

References

  1. Ball, P.: Water—an enduring mystery. Nature 452, 291–292 (2008)

    Article  CAS  PubMed  Google Scholar 

  2. Stillinger, F.H.: Water revisited. Science 209, 451–457 (1980)

    Article  CAS  PubMed  Google Scholar 

  3. Mishima, O., Stanley, H.E.: The relationship between liquid, supercooled and glassy water. Nature 396, 329–335 (1998)

    Article  CAS  Google Scholar 

  4. Blumberg, R.L., Stanley, H.E., Geiger, A., Mausbach, P.: Connectivity of hydrogen bonds in liquid water. J. Chem. Phys. 80, 5230 (1984)

    Article  CAS  Google Scholar 

  5. Smith, J.D., Cappa, C.D., Wilson, K.R., Messer, B.M., Cohen, R.C., Saykally, R.J.: Energetics of hydrogen bond network rearrangements in liquid water. Science 306, 851–853 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Luzar, A., Chandler, D.: Hydrogen-bond kinetics in liquid water. Nature 379, 55–57 (1996)

    Article  CAS  Google Scholar 

  7. Ludwig, R.: Water: from clusters to the bulk. Angew. Chem. Int. Ed. 40, 1808–1827 (2001)

    Article  CAS  Google Scholar 

  8. Ozkanlar, A., Zhou, T., Clark, A.E.: Towards a unified description of the hydrogen bond network of liquid water: a dynamics based approach. J. Chem. Phys. 141, 214107 (2014)

    Article  PubMed  Google Scholar 

  9. Bako, I., Megyes, T., Balint, S., Chihaia, V., Bellissent-Funel, M.-C., Krienke, H., Kopf, A., Suh, S.-H.: Hydrogen bonded network properties in liquid formamide. J. Chem. Phys. 132, 014506 (2010)

    Article  PubMed  Google Scholar 

  10. Bako, I., Bencsura, A., Herrmanson, K., Balint, S., Grosz, T., Chihaia, V., Olah, J.: Hydrogen bond network topology in liquid water and methanol: a graph theory approach. Phys. Chem. Chem. Phys. 15, 15163–15171 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. Cordeiro, J.M.M.: C-H···O and N–H···O hydrogen bonds in liquid amides investigated by Monte Carlo simulation. Int. J. Quant. Chem. 65, 709–717 (1997)

    Article  Google Scholar 

  12. Puhovski, Y.P., Rode, B.M.: Structure and dynamics of liquid formamide. Chem. Phys. 190, 61–82 (1995)

    Article  CAS  Google Scholar 

  13. Bako, I., Megyes, T., Balint, S., Grosz, T., Chihaia, V.: Water–methanol mixtures: topology of hydrogen bonded network. Phys. Chem. Chem. Phys. 10, 5004–5011 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. Bako, I., Olah, J., Labas, A., Balint, S., Pusztai, L., Bellissent-Funel, M.-C.: Water–formamide mixtures: topology of the hydrogen-bonded network. J. Mol. Liq. 228, 25–31 (2017)

    Article  CAS  Google Scholar 

  15. Ozkanlar, A.: Structural properties of hydrogen-bond network in liquid formamide–water mixtures. Fluid Phase Equilib. 456, 98–108 (2018)

    Article  CAS  Google Scholar 

  16. Vaisman, I.I., Berkowitz, M.L.: Local structural order and molecular associations in water–DMSO mixtures. Molecular dynamics study. J. Am. Chem. Soc. 114, 7889–7896 (1992)

    Article  CAS  Google Scholar 

  17. Bellissent-Funel, M.-C., Nasr, S., Bosio, L.: X-ray and neutron scattering studies of the temperature and pressure dependence of the structure of liquid formamide. J. Chem. Phys. 106, 7913 (1997)

    Article  CAS  Google Scholar 

  18. Tsuchida, E.: Ab initio molecular-dynamics study of liquid formamide. J. Chem. Phys. 121, 4740 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. Jadzyn, J., Swiergiel, J.: On similarity of hydrogen-bonded networks in liquid formamide and water as revealed in the static dielectric studies. Phys. Chem. Chem. Phys. 14, 3170–3175 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. Takamuku, T., Yamaguchia, T., Asato, M., Matsumoto, M., Nishi, N.: Structure of clusters in methanol–water binary solutions studied by mass spectrometry and X-ray diffraction. Z Naturforsch. 55a, 513–525 (2000)

    Article  Google Scholar 

  21. Andanson, J.M., Bopp, P., Soetens, J.C.: Relation between hydrogen bonding and intramolecular motions in liquid and supercritical methanol. J. Mol. Liq. 129, 101–107 (2006)

    Article  CAS  Google Scholar 

  22. Voet, D., Voet, J.G.: Biochemistry. Wiley, Hoboken (2011)

    Google Scholar 

  23. Kannan, P.P., Karthick, N.K., Arivazhagan, G.: Hydrogen bond interactions in the binary solutions of formamide with methanol: FTIR spectroscopic and theoretical studies. Spectrochim. Acta A 229, 117892 (2020)

    Article  CAS  Google Scholar 

  24. Abdelmoulahi, H., Trabelsi, S., Nasr, S., Bellissent-Funel, M.-C.: Hydrogen-bond network in liquid formamide methanol mixture as studied by neutron scattering and density functional theory. J. Mol. Liq. 271, 8–15 (2018)

    Article  CAS  Google Scholar 

  25. Stangret, J., Kamienska-Piotrowicz, E., Laskowska, K.: FT-IR studies of molecular interactions in formamide–methanol mixtures. Vib. Spectrosc. 44, 324–330 (2007)

    Article  CAS  Google Scholar 

  26. Lovas, F.J., Suenram, R.D., Fraser, G.T., Gillies, C.W., Zozom, J.: The microwave spectrum of formamide–water and formamide–methanol complexes. J. Chem. Phys. 88, 722 (1988)

    Article  CAS  Google Scholar 

  27. Fu, A., Du, D., Zhou, Z.: Density functional theory study of the hydrogen bonding interaction of 1:1 complexes of formamide with methanol. Chem. Phys. Lett. 377, 537–543 (2003)

    Article  CAS  Google Scholar 

  28. Fu, A., Du, D., Zhou, Z.: Study of the formamide–methanol dimer with ab initio and density functional theory methods. Int. J. Quantum Chem. 97, 865–875 (2004)

    Article  CAS  Google Scholar 

  29. Jasien, P.G., Stevens, W.J.: Ab initio study of the hydrogen bonding interactions of formamide with water and methanol. J. Chem. Phys. 84, 3271 (1986)

    Article  CAS  Google Scholar 

  30. Sathyan, N., Santhanam, V., Sobhanadri, J.: Ab initio calculations on some binary systems involving hydrogen bonds. J. Mol. Struct. (Theochem) 333, 179–189 (1995)

    Article  CAS  Google Scholar 

  31. Chen, B., Potoff, J.J., Siepmann, J.I.: Monte Carlo calculations for alcohols and their mixtures with alkanes. Transferable potentials for phase equilibria. 5. United-atom description of primary, secondary, and tertiary alcohols. J. Phys. Chem. B 105, 3093–3104 (2001)

    Article  CAS  Google Scholar 

  32. Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., Mackerell, A.D., Jr.: CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Martins, F., Leitao, R.E., Nunes, N.: Volumetric and refractive index study of the ternary mixture methanol/formamide/acetonitrile at 298.15 K. J. Mol. Liq. 234, 463–468 (2017)

    Article  CAS  Google Scholar 

  34. Todorov, I.T., Smith, W., Trachenko, K., Dove, M.T.: DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism. J. Mater. Chem. 16, 1911–1918 (2006)

    Article  CAS  Google Scholar 

  35. Yamaguchi, T., Hidaka, K., Soper, A.K.: The structure of liquid methanol revisited: a neutron diffraction experiment at −80 °C and +25 °C. Mol. Phys. 96, 1159–1168 (1999)

    Article  CAS  Google Scholar 

  36. Yamaguchi, T., Hidaka, K., Soper, A.K.: Erratum The structure of liquid methanol revisited: a neutron diffraction experiment at − 80 °C and + 25 °C. Mol. Phys. 97, 603–605 (1999)

    Article  CAS  Google Scholar 

  37. Ohtaki, H., Funaki, A., Rode, B.M., Reibnegger, G.J.: The structure of liquid formamide studied by means of X-ray diffraction and ab ınitio LCGO-MO-SCF calculations. Bull. Chem. Soc. Jpn. 56, 2116–2121 (1983)

    Article  CAS  Google Scholar 

  38. Ozkanlar, A., Clark, A.E.: ChemNetworks: a complex network analysis tool for chemical systems. J. Comput. Chem. 35, 495–505 (2014)

    Article  CAS  PubMed  Google Scholar 

  39. Floyd, R.W.: Algorithm 97 shortest path. Commun. ACM 5, 345 (1962)

    Article  Google Scholar 

  40. Warshall, S.: A theorem on boolean matrices. J. ACM 9, 11–12 (1962)

    Article  Google Scholar 

  41. Ozkanlar, A., Kelley, M.P., Clark, A.E.: Water organization and dynamics on mineral surfaces ınterrogated by graph theoretical analyses of ıntermolecular chemical networks. Minerals 4, 118–129 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the computing time provided by Erciyes University Computer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Ozkanlar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 300 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozkanlar, A. Structure of the Hydrogen-Bond Network in Binary Mixtures of Formamide and Methanol. J Solution Chem 50, 257–276 (2021). https://doi.org/10.1007/s10953-021-01058-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01058-7

Keywords

Navigation