Skip to main content
Log in

Quantum-chemical studies on thermodynamic feasibility of 1-methyl-2,4,5-trinitroimidazole processes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

1-Methyl-2,4,5-trinitro imidazole (MTNI) is a well-known melt cast explosive possessing good thermal stability and impact insensitivity. MTNI has been synthesized from multi-step nitration followed by methylation of imidazole exhibiting low yield. It is desirable to screen the process thermodynamically for evaluating feasibility of the process. In the present investigations, B3LYP method in combination with 3-21G** basis set has been chosen to evaluate the enthalpy of formation for reaction species by designing reasonable isodesmic reactions. Thermodynamic feasibility of the processes has been worked out assuming free energies of reactions as derived from standard enthalpy and entropy of the reaction species. All possible synthesis routes for the target molecule, MTNI has been conceptualized from different precursors/intermediates viz. imidazole, 2-nitroimidazole, 4-nitroimidazole, 1-methyl imidazole and 2,4,5-triiodoimidazole. Various nitrating agents have been employed and their effect studied for deciding the feasibility of the reaction. It has been found that reaction entropy and enthalpy are favorable on usage of NO2BF4 as nitrating agent. The charge on nitro group (−QNO2) has been used for better understanding of the reactivity of substrates/intermediates. Overall, the study helped in screening several possible routes for MTNI synthesis and identified the thermodynamically feasible process by using NO2BF4 as nitrating agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li YF, Wang ZY, Ju XH, Fan XW (2009) J Mol Struct (THEOCHEM) 907:29

    Article  CAS  Google Scholar 

  2. Li XH, Zhang R, Zhang XZ (2010) J Hazard Mater 183:622

    Article  CAS  Google Scholar 

  3. Su XF, Cheng XL, Ge SH (2009) J Mol Struct (THEOCHEM) 895:44

    Article  CAS  Google Scholar 

  4. Su XF, Cheng XL, Meng CM, Yuan XL (2009) J Hazard Mater 161:551

    Article  CAS  Google Scholar 

  5. Cho SG, Park BS, Cho JR (1999) Propellants Explos Pyrotech 24:343

    Article  CAS  Google Scholar 

  6. Gao HX, Ye CF, Gupta OD, Xiao JC, Hiskey MA, Twamley B, Shreeve JM (2007) Chem Eur J 13:3853

    Article  CAS  Google Scholar 

  7. Cho SG, Cho JR, Goh EM, Kim JK, Damavarapu R, Surapaneni R (2005) Propellants Explos Pyrotech 30:445

    Article  CAS  Google Scholar 

  8. Bracuti AJ (1995) J Chem Crystallogr 25:625

    Article  CAS  Google Scholar 

  9. Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP (2008) J Hazard Mater 151:289

    Article  CAS  Google Scholar 

  10. Beanard PW, Fouche FC, Bezuidenhout HC (1997) Less sensitive TNT-based formulations, australian explosive ordance symposium (Parari’ 1997), Canberra, Australia, Nov 12–14

  11. Nicolich S, Niles J, Ferlazzo P, Doll D, Braithwaite P, Rausmussen N, Ray M, Gunger M, Spencer A (2003) Recent developments in reduced sensitivity melt pour explosives, 34th Int. Annual Conference of ICT, Karlsruhe, Germany, June 24–27

  12. Levenspiel O (1995) Chemical reaction engineering. Wiley, New York

    Google Scholar 

  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision A.1. Gaussian Inc, Pittsburgh

    Google Scholar 

  14. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  15. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  16. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  17. Pietro WJ, Francl MM, Hehre WJ, Defrees DJ, Pople JA, Binkley JS (1982) J Am Chem Soc 104:5039

    Article  CAS  Google Scholar 

  18. Dobbs KD, Hehre WJ (1987) J Comput Chem 8:861

    Article  CAS  Google Scholar 

  19. Hehre WJ, Ditchfield R, Radom L, Pople JA (1970) J Am Chem Soc 92:4796

    Article  CAS  Google Scholar 

  20. Hehre WJ, Radom L, PvR S, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  21. Ghule VD, Jadhav PM, Patil RS, Radhakrishnan S, Soman T (2010) J Phys Chem A 114:498

    Article  CAS  Google Scholar 

  22. Zhang C (2009) J Hazard Mater 161:21

    Article  CAS  Google Scholar 

  23. Zahedi E, Aghaie M, Zare K (2009) J Mol Struct (THEOCHEM) 905:101

    Article  CAS  Google Scholar 

  24. Novikov SS, Khmelnitskii LI, Lebedev OV, Sevastyanova VV, Epishina LV (1970) Chem Heterocycl Comp 6:465

    Article  Google Scholar 

  25. Bulusu S, Damavarapu R, Autera JR, Behrens R, Minier LM, Villanueva J, Jayasuriya K, Axenrod T (1995) J Phys Chem 99:5009

    Article  CAS  Google Scholar 

  26. Cho JR, Kim KJ, Cho SG, Kim JK (2002) J Heterocycl Chem 39:141

    Article  CAS  Google Scholar 

  27. Damavarapu R, Surapaneni CR, Gelber N, Duddu RG, Zhang MX, Dave PR (2007) US Patent 7304164

  28. Jadhav HS, Talawar MB, Sivabalan R, Dhavale DD, Asthana SN, Krishnamurthy VN (2007) J Hazard Mater 143:192

    Article  CAS  Google Scholar 

  29. George AO, Ripudaman M, Subhash CN (1989) Nitration: methods and mechanisms. VCH, New York

    Google Scholar 

  30. Politzer P, Laurence PR, Abrahmsen L, Zilles BA, Sjoberg P (1984) Chem Phys Lett 111:75

    Article  CAS  Google Scholar 

  31. Murray JS, Politzer P (1990) J Mol Struct (THEOCHEM) 209:163

    Article  Google Scholar 

  32. Zaheeruddin M, Lodhi ZH (1991) Phys Chem (Peshawar Pak) 10:111

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Director, HEMRL for his approval to publish this work. The author V. D. Ghule thanks ACRHEM, University of Hyderabad, Hyderabad, for financial support. The authors are thankful to E. S. Abraham for her support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pandurang M. Jadhav or Radhakrishnan Sarangapani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jadhav, P.M., Sarangapani, R., Ghule, V.D. et al. Quantum-chemical studies on thermodynamic feasibility of 1-methyl-2,4,5-trinitroimidazole processes. J Mol Model 19, 3027–3033 (2013). https://doi.org/10.1007/s00894-013-1837-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1837-5

Keywords

Navigation