Skip to main content
Log in

The study of spectroscopy and vibrational assignments of high nitrogen material 1,1′-azobis-1,2,3-triazole

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Benefiting from the new strategy of oxidative azo coupling of the N−NH2 moiety, a series of energetic nitrogen-rich molecules with long catenated nitrogen chains have been successfully synthesized. As one of them, the synthesized 1,1′-azobis-1,2,3-triazole shows excellent thermal stability, great explosive performance, and special photochromic properties, which has caused widespread concern. To further characterize its performance, the structural, electronic, vibrational, mechanical, and thermodynamic properties of 1,1′-azobis-1,2,3-triazole were investigated based on the first-principles density functional theory calculations. The obtained structural parameters are consistent with previous results. We used the band structure, density of states, Mulliken charges, bond populations, and electron density to analyze the electronic properties and chemical bonding. The vibrational frequency regions (396.51–3210.12 cm−1) were assigned to the corresponding vibrational modes. Furthermore, mechanical properties of 1,1′-azobis-1,2,3-triazole are also calculated. Finally, the thermodynamic properties of 1,1′-azobis-1,2,3-triazole were calculated, including the specific heat at constant volume Cv, temperature*entropy TS, enthalpy H, Gibbs free energy G, and Debye temperature ΘD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All relevant data are within the paper.

Code availability

N/A

References

  1. Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP (2008). J Hazard Mater 151:289

    Article  CAS  Google Scholar 

  2. Talawar MB, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, Subhananda Rao A (2009). J Hazard Mater 161:589

    Article  CAS  Google Scholar 

  3. Schmitt D, Eyerer P, Elsner P (1997). Propellants Explos Pyrotech 22:109

    Article  CAS  Google Scholar 

  4. Qi C, Li SH, Li YC, Wang Y, Chen XK, Pang SP (2011). J Mater Chem 21:3221

    Article  CAS  Google Scholar 

  5. Gao H, Shreeve JM (2011). Chem Rev 111:7377

    Article  CAS  Google Scholar 

  6. Mueller D (1999). Propellants Explos Pyrotech 24:176

    Article  CAS  Google Scholar 

  7. Yin P, Zhang Q, Shreeve JM (2016). Acc Chem Res 49:4

    Article  CAS  Google Scholar 

  8. Huynh MHV, Hiskey MA, Hartline EL, Montoya DP, Gilardi R (2004). Angew Chem Int Ed 43:4924

    Article  CAS  Google Scholar 

  9. Sikder AK, Sikder N (2004). J Hazard Mater A112:1

    Article  Google Scholar 

  10. Zhang QH, Shreeve JM (2013). Angew Chem Int Ed 52:2

    Google Scholar 

  11. Gamekkanda JC, Sinha AS, Aakeröy CB (2020). Cryst Growth Des 20:2432

    Article  CAS  Google Scholar 

  12. Wang Q, Lu HJ, Pang FQ, Huang JL, Nie F, Chen FX (2016). RSC Adv 6:56827

    Article  CAS  Google Scholar 

  13. Shang Y, Jin B, Liu QQ, Peng RF, Guo ZC, Zhang QC (2017). J Mol Struct 1133:519

    Article  CAS  Google Scholar 

  14. Xiao YY, Jin B, Peng RF, Zhao J, Liu QQ, Chu SJ (2017). J Mol Struct 1146:417

    Article  CAS  Google Scholar 

  15. Liu JP, Liu LL, Liu XB (2020). Sci China Technol Sci 63:195

    Article  CAS  Google Scholar 

  16. Pang FQ, Wang GL, Lu T, Fan GJ, Chen FX (2018). New J Chem 42:4036

    Article  CAS  Google Scholar 

  17. Kumar D, Imler GH, Parrish DA, Shreeve JM (2017). J Mater Chem A 5:16767

    Article  CAS  Google Scholar 

  18. Li YN, Shu YJ, Wang YL, Wang BZ, Zhang SY, Bi FQ (2017). Cent Eur J Energ Mater 14:321

    Article  CAS  Google Scholar 

  19. Li YC, Qi C, Li SH, Zhang HJ, Sun CH, Yu YZ, Pang SP (2010). J Am Chem Soc 132:12172

    Article  CAS  Google Scholar 

  20. Klapötke TM, Piercey DG, Stierstorfer J (2012). Dalton Trans 41:9451

    Article  Google Scholar 

  21. Klapötke TM, Piercey DG (2011). Inorg Chem 50:2732

    Article  Google Scholar 

  22. Tang YX, Yang HW, Shen JH, Wu B, Ju XH, Lu CX, Cheng GB (2012). New J Chem 36:2447

    Article  CAS  Google Scholar 

  23. Tang YX, Yang HW, Wu B, Ju XH, Lu CX, Cheng GB (2013). Angew Chem 125:4975

    Article  Google Scholar 

  24. Politzer P, Murray JS (2016). Propellants Explos Pyrotech 41:414

    Article  CAS  Google Scholar 

  25. Pepekin VI, Korsunskii BL, Denisaev AA (2008). Combust Explos Shock Waves (Engl Transl) 44:586

    Article  Google Scholar 

  26. Pepekin VI, Gubin SA (2007). Combust Explos Shock Waves (Engl Transl) 43:212

    Article  Google Scholar 

  27. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005). Z Kristallogr 220:567

    Article  CAS  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  29. Monkhorst HJ, Pack JD (1976). Phys Rev B 13:5188

    Article  Google Scholar 

  30. Grimme S (2006). J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  31. Qin H, Zeng W, Liu FS, Gan YD, Tang B, Zhu SH, Liu QJ. J Energ Mater. https://doi.org/10.1080/07370652.2020.1762799

  32. Qin H, Yan BL, Zhong M, Jiang CL, Liu FS, Tang B, Liu QJ (2019). Phys B 552:151

    Article  CAS  Google Scholar 

  33. Segall MD, Shah R, Pickard CJ, Payne MC (1996). Phys Rev B 54:16317

    Article  CAS  Google Scholar 

  34. Liu H, Zhao JJ, Ji GF, Wei DQ, Gong ZZ (2006). Phys Lett A 358:63

    Article  CAS  Google Scholar 

  35. Yu CF, Cheng HC, Chen WH (2016). Mater Chem Phys 174:70

    Article  CAS  Google Scholar 

  36. Mouhat F, Coudert FX (2014). Phys Rev B 90:224104

    Article  Google Scholar 

  37. Voigt W (1928) Lehrbuchderkristallphysik. Teubner, Leipzig

  38. Reuss A (1929). Z Angew Math Mech 9:49

    Article  CAS  Google Scholar 

  39. Hill R (1952). Proc Phys Soc Lond 65:349

    Article  Google Scholar 

  40. Pugh SF (1954) Phil. Mag 45:823

  41. Ranganathan SI, Ostoja-Starzewski M (2008). Phys Rev Lett 101:055504

    Article  Google Scholar 

  42. Debye P (1912). Ann Phys 39:789

    Article  CAS  Google Scholar 

  43. Ashcroft NW, Mermin ND (1976) Solid State Physics. Saunders College Philadelphia

Download references

Funding

This work was supported by the Sichuan Province Undergraduate Innovation and Entrepreneurship Training Program (Grant No. 2020114), the key research project of Shaanxi Province (2021KWZ-20), and the National Natural Science Foundation of China (12004292).

Author information

Authors and Affiliations

Authors

Contributions

Wen-Jin Zhang: Conceptualization, data curation, formal analysis, investigation, methodology, and writing-original draft

Xin Ye: Investigation, methodology, and writing-review and editing

Ning-Chao Zhang: Formal analysis, funding acquisition, investigation, methodology, and writing-review and editing

Qi-Jun Liu: Conceptualization, funding acquisition, and writing-review and editing

Dai-He Fan: Formal analysis, methodology, and writing-review and editing

Zheng-Tang Liu: Methodology, software, and writing-review and editing

Dan Hong: Conceptualization, investigation, methodology, project administration, resources, supervision, and writing-review and editing

Yun Wei: Conceptualization, methodology, project administration, resources, supervision, and writing-review and editing

Corresponding authors

Correspondence to Dan Hong or Yun Wei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WJ., Ye, X., Zhang, NC. et al. The study of spectroscopy and vibrational assignments of high nitrogen material 1,1′-azobis-1,2,3-triazole. J Mol Model 27, 205 (2021). https://doi.org/10.1007/s00894-021-04822-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04822-0

Keywords

Navigation