Skip to main content

Advertisement

Log in

In vitro inhibitory profile of NDGA against AChE and its in silico structural modifications based on ADME profile

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Acetylcholinesterase (AChE) inhibitors are currently in focus for the pharmacotherapy of Alzheimer’s disease (AD). These inhibitors increase the level of acetylcholine in the brain and facilitate cholinergic neurotransmission. AChE inhibitors such as rivastigmine, galantamine, physostigmine and huperzine are obtained from plants, indicating that plants can serve as a potential source for novel AChE inhibitors. We have performed a virtual screening of diverse natural products with distinct chemical structure against AChE. NDGA was one among the top scored compounds and was selected for enzyme kinetic studies. The IC50 of NDGA on AChE was 46.2 μM. However, NDGA showed very poor central nervous system (CNS) activity and blood–brain barrier (BBB) penetration. In silico structural modification on NDGA was carried out in order to obtain derivatives with better CNS activity as well as BBB penetration. The studies revealed that some of the designed compounds can be used as lead molecules for the development of drugs against AD

Inhibitory activity of NDGA against AChE

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Selkoe DJ, Schenk D (2003) Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol 43:545–584

    Article  CAS  Google Scholar 

  2. Schliebs R (2005) Basal forebrain cholinergic dysfunction in Alzheimer’s disease–interrelationship with beta-amyloid, inflammation and neurotrophin signaling. Neurochem Res 30:895–908

    Article  CAS  Google Scholar 

  3. Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science 314:777–781

    Article  CAS  Google Scholar 

  4. Luttmann E, Linnemann E, Fels G (2002) Galantamine as bis-functional ligand for the acetylcholinesterase. J Mol Model 8:208–216

    Article  CAS  Google Scholar 

  5. Schrattenholz A, Pereira EF, Roth U, Weber KH, Albuquerque EX, Maelicke A (1996) Agonist responses of neuronal nicotinic acetylcholine receptors are potentiated by a novel class of allosterically acting ligands. Mol Pharmacol 49:1–6

    CAS  Google Scholar 

  6. Coyle JT, Geerts H, Sorra K, Amatniek J (2007) Beyond in vitro data: a review of in vivo evidence regarding the allosteric potentiating effect of galantamine on nicotinic acetylcholine receptors in Alzheimer’s neuropathology. J Alzheimers Dis 11:491–507

    CAS  Google Scholar 

  7. Reyes AE, Chacon MA, Dinamarca MC, Cerpa W, Morgan C, Inestrosa NC (2004) Acetylcholinesterase—Abeta complexes are more toxic than Abeta fibrils in rat hippocampus: effect on rat beta-amyloid aggregation, laminin expression, reactive astrocytosis, and neuronal cell loss. Am J Pathol 164:2163–2174

    Article  CAS  Google Scholar 

  8. Castro A, Martinez A (2006) Targeting beta-amyloid pathogenesis through acetylcholinesterase inhibitors. Curr Pharm Des 12:4377–4387

    Article  CAS  Google Scholar 

  9. Kasa P, Papp H, Kasa P Jr, Torok I (2000) Donepezil dose-dependently inhibits acetylcholinesterase activity in various areas and in the presynaptic cholinergic and the postsynaptic cholinoceptive enzyme-positive structures in the human and rat brain. Neuroscience 101:89–100

    Article  CAS  Google Scholar 

  10. Kurz A (1998) The therapeutic potential of tacrine. J Neural Transm Suppl 54:295–299

    CAS  Google Scholar 

  11. Sugimoto H (2001) Donepezil hydrochloride: a treatment drug for Alzheimer’s disease. Chem Rec 1(1):63–73

    Article  CAS  Google Scholar 

  12. Zarotsky V, Sramek JJ, Cutler NR (2003) Galantamine hydrobromide: an agent for alzheimer’s disease. Am J Health Syst Pharm 60:446–452

    CAS  Google Scholar 

  13. Jann MW (2000) Rivastigmine, a new- generation cholinesterase inhibitor for the treatment of Alzheimer’s disease. Pharmacotherapy 20(1):1–12

    Article  CAS  Google Scholar 

  14. Francis PT, Nordberg A, Arnold SE (2005) A preclinical view of cholinesterase inhibitors in neuroprotection: do they provide more than symptomatic benefits in Alzheimer’s disease? Trends Pharmacol Sci 26:104–111

    Article  CAS  Google Scholar 

  15. Wang YE, Yue DX, Tang XC (1986) Anticholinesterase activity of huperzine A. Acta pharmacol Sin 7:110–113

    CAS  Google Scholar 

  16. Barak D, Ordentlich A, Stein D, Yu QS, Greig NH, Shafferman A (2009) Accommodation of physostigmine and its analogs by acetylcholinesterase is dominated by hydrophobic interactions. Biochem J 417(1):213–222

    Article  CAS  Google Scholar 

  17. Arteaga S, Andrade-Cetto A, Cardenas R (2005) Larrea tridentate (creosote bush) an abundant palnt of Mexican and US-american desert and its metabolite nordihydroguairetic acid. J Ethnopharmol 98(3):231–239

    Article  CAS  Google Scholar 

  18. Oliveto EP (1972) Nordihydroguaiaretic acid. A naturally occurring antioxidant. Chem Ind 17:677–679

    Google Scholar 

  19. Noor R, Mittal S, Iqbal J (2002) Superoxide dismutase-applications and relevance to human diseases. Med Sci Monit 8:RA210–RA215

    CAS  Google Scholar 

  20. Guzman-Beltran S, Espada S, Orozco-Ibarra M, Pedraza-Chaverri J, Cuadrado A (2008) Nordihydroguaiaretic acid activates the antioxidant pathway Nrf2/HO-1 and protects cerebellargranule neurons against oxidative stress. Neurosci Lett 447:167–171

    Article  CAS  Google Scholar 

  21. Goodman Y, Steiner MR, Steiner SM, Mattson MP (1994) Nordihydroguaiaretic acid protects hippocampal neurons against amyloid beta-peptide toxicity, and attenuates free radical and calcium accumulation. Brain Res 654:171–176

    Article  CAS  Google Scholar 

  22. Rothman SM, Yamada KA, Lancaster N (1993) Nordihydroguaiaretic acid attenuates NMDA neurotoxicity—action beyond the receptor. Neuropharmacology 32:1279–1288

    Article  CAS  Google Scholar 

  23. Boston-Howes W, Williams EO, Bogush A, Scolere M, Pasinelli P, Trotti D (2008) Nordihydroguaiaretic acid increases glutamate uptake in vitro and in vivo: therapeutic implications for amyotrophic lateral sclerosis. Exp Neurol 213:229–237

    Article  CAS  Google Scholar 

  24. Shishido Y, Furushiro M, Hashimoto S, Yokokura T (2001) Effect of nordihydroguaiaretic acid on behavioral impairment and neuronal cell death after forebrain ischemia. Pharmacol Biochem Behav 69:469–474

    Article  CAS  Google Scholar 

  25. Majumdar DK, Govil JN, Singh VK (2003) Recent progress in medicinal plants. Vol 8 Phytochemistry and Pharmacology. Studium, Houston, TX

    Google Scholar 

  26. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  27. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I (1991) Science 253:872–879

    Article  CAS  Google Scholar 

  28. Bon S, Vigny M, Massoulie J (1979) Asymmetric and globular forms of acetylcholinesterase in mammals and birds. Proc Natl Acad Sci USA 76:2546–2550

    Article  CAS  Google Scholar 

  29. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  Google Scholar 

  30. Ekins S, Waller CL, Swann PW, Cruciani G, Wrighton SA, Wikel JH (2000) J Pharmacol Toxicol 44:251–272

    Article  CAS  Google Scholar 

  31. Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM (2005) Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx 2:554–571

    Google Scholar 

  32. Clark DE (2003) In silico prediction of blood–brain barrier permeation. Drug Discov Today 8:927–933

    Article  CAS  Google Scholar 

  33. Lloyd EJ, Andrews PR (1986) A common structural model for central nervous system drugs and their receptors. J Med Chem 29:453–462

    Article  CAS  Google Scholar 

  34. Lemke TL, Williams DA, Roche VF, Zito SW (2008), Foye’s principles of medicinal chemistry. Wolters Kluwer/Lippincott Williams and Wilkins, Baltimore

  35. Pajouhesh H, Lenz GR (2005) Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2:541–553

    Article  Google Scholar 

  36. Clark DE (1999) Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood–brain barrier penetration. J Pharm Sci 88:815–821

    Article  CAS  Google Scholar 

  37. Ajay, Bemis GW, Murcko MA (1999) Designing libraries with CNS activity. J Med Chem 42:4942–4951

    Article  CAS  Google Scholar 

  38. Balon K, Riebesehl BU, Muller BW (1999) Determination of liposome partitioning of ionizable drugs by titration. J Pharm Sci 88:802–806

    Article  CAS  Google Scholar 

  39. Bhal SK, Kassam K, Peirson IG, Pearl GM (2007) The rule of five revisited: applying log d in place of log p in drug-likeness filters. Mol Pharmaceut 4:556–560

    Article  CAS  Google Scholar 

  40. Garberg P, Ball M, Borg N, Cecchelli R, Fenart L, Hurst RD, Lindmark T, Mabondzo A, Nilsson JE, Raub TJ, Stanimirovic D, Terasaki T, Oberg JO (2005) In vitro models for the blood–brain barrier. Toxicol In Vitro 19:299–334

    Article  CAS  Google Scholar 

  41. Deli MA, Abraham CS, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood–brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25:59–127

    Article  Google Scholar 

  42. Reichel A, Begley DJ, Abbott NJ (2003) An overview of in vitro techniques for blood–brain barrier studies. Methods Mol Med 89:307–324

    CAS  Google Scholar 

  43. Doan KM, Humphreys JE, Webster LO, Wring SA, Shampine LJ, Serabjit-Singh CJ (2002) Passive permeability and P-glycoproteinmediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther 303:1029–1037

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the use of computational facilities provided by Bioinformatics Infrastructure Facility (supported by DBT, Government of India) at Kannur University and BIOGENE cluster, Bioinformatics Resources and Application Facility at C-DAC (Center for Development of Advanced Computing) Pune, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chittalakkottu Sadasivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remya, C., Dileep, K.V., Tintu, I. et al. In vitro inhibitory profile of NDGA against AChE and its in silico structural modifications based on ADME profile. J Mol Model 19, 1179–1194 (2013). https://doi.org/10.1007/s00894-012-1656-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1656-0

Keywords

Navigation