Skip to main content
Log in

Assessing the quantum mechanical level of theory for prediction of linear and nonlinear optical properties of push-pull organic molecules

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this paper, we assessed the quantum mechanical level of theory for prediction of linear and nonlinear optical (NLO) properties of push-pull organic molecules. The electric dipole moment (μ), mean polarizability (〈α〉) and total static first hyperpolarizability (βt) were calculated for a set of benzene, styrene, biphenyl and stilbene derivatives using HF, MP2 and DFT (31 different functionals) levels and over 71 distinct basis sets. In addition, we propose two new basis sets, NLO-V and aNLO-V, for NLO properties calculations. As the main outcomes it is shown that long-range corrected DFT functionals such as M062X, ωB97, cam-B3LYP, LC-BLYP and LC-ωPBE work satisfactorily for NLO properties when appropriate basis sets such as those proposed here (NLO-V or aNLO-V) are used. For most molecules with β ranging from 0 to 190 esu, the average absolute deviation was 13.2 esu for NLO-V basis sets, compared to 27.2 esu for the standard 6-31 G(2d) basis set. Therefore, we conclude that the new basis sets proposed here (NLO-V and aNLO-V), together with the cam-B3LYP functional, make an affordable calculation scheme to predict NLO properties of large organic molecules.

Calculated values for total static first hyperpolarizability (βt) for 4-amino-4′-nitrostilbene at cam-B3LYP/basis set level. Experimental from Cheng et al. [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cheng LT, Tam W, Marder SR, Stiegman AE, Rikken G, Spangler CW (1991) J Phys Chem 95:10643–10652

    Article  CAS  Google Scholar 

  2. Cheng LT, Tam W, Stevenson SH, Meredith GR, Rikken G, Marder SR (1991) J Phys Chem 95:10631–10642

    Article  CAS  Google Scholar 

  3. Delaire JA, Nakatani K (2000) Chem Rev 100:1817–1845

    Article  CAS  Google Scholar 

  4. Hurst GJB, Dupuis M, Clementi E (1988) J Chem Phys 89:385–395

    Article  CAS  Google Scholar 

  5. Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195–242

    Article  CAS  Google Scholar 

  6. Marder SR, Beratan DN, Cheng LT (1991) Sci 252:103–106

    Article  CAS  Google Scholar 

  7. Miller TM, Bederson B (1988) Adv Atom Mol Phys 25:37–60

    Article  CAS  Google Scholar 

  8. Ward JF, Miller CK (1979) Phys Rev A 19:826–833

    Article  CAS  Google Scholar 

  9. Sekino H, Bartlett RJ (1993) J Chem Phys 98:3022–3037

    Article  CAS  Google Scholar 

  10. Spackman MA (1989) J Phys Chem 93:7594–7603

    Article  CAS  Google Scholar 

  11. Paschoal D, Costa MF, Junqueira GMA, Dos Santos HF (2009) J Mol Struct (THEOCHEM) 913:200–206

    Article  CAS  Google Scholar 

  12. Maroulis G (1996) J Phys Chem 100:13466–13473

    Article  CAS  Google Scholar 

  13. Maroulis G (1998) J Chem Phys 108:5432–5448

    Article  CAS  Google Scholar 

  14. Maroulis G (2003) J Mol Struct (THEOCHEM) 633:177–197

    Article  CAS  Google Scholar 

  15. Maroulis G (2003) J Chem Phys 118:2673–2687

    Article  CAS  Google Scholar 

  16. Maroulis G (2007) Chem Phys Lett 442:265–269

    Article  CAS  Google Scholar 

  17. Maroulis G (2010) Int J Quantum Chem 111:807–818

    Article  Google Scholar 

  18. Maroulis G, Makris C, Xenides D, Karamanis P (2000) Mol Phys 98:481–491

    Article  CAS  Google Scholar 

  19. Maroulis G, Menadakis M (2010) Chem Phys Lett 494:144–149

    Article  CAS  Google Scholar 

  20. Haskopoulos A, Maroulis G (2010) J Phys Chem A 114:8730–8741

    Article  CAS  Google Scholar 

  21. Maroulis G (2008) J Chem Phys 129:044314

    Article  Google Scholar 

  22. Maroulis G, Karamanis P, Pouchan C (2007) J Chem Phys 126:154316

    Article  Google Scholar 

  23. Rappoport D, Furche F (2010) J Chem Phys 133:134105

    Article  Google Scholar 

  24. Suponitsky KY, Tafur S, Masunov AE (2008) J Chem Phys 129:044109

    Article  Google Scholar 

  25. Boese AD, Martin JML (2004) J Chem Phys 121:3405–3416

    Article  CAS  Google Scholar 

  26. Paschoal D, Costa MF, Junqueira GMA, Dos Santos HF (2010) J Comput Methods Sci Eng 10:239–256

    CAS  Google Scholar 

  27. Albert IDL, Marks TJ, Ratner MA (1997) J Am Chem Soc 119:6575–6582

    Article  CAS  Google Scholar 

  28. Marder SR, Perry JW, Bourhill G, Gorman CB, Tiemann BG, Mansour K (1993) Sci 261:186–189

    Article  CAS  Google Scholar 

  29. Meyers F, Marder SR, Pierce BM, Bredas JL (1994) J Am Chem Soc 116:10703–10714

    Article  CAS  Google Scholar 

  30. Sim F, Chin S, Dupuis M, Rice JE (1993) J Phys Chem 97:1158–1163

    Article  CAS  Google Scholar 

  31. Atalay Y, Avci D, Basoglu A (2008) Struct Chem 19:239–246

    Article  CAS  Google Scholar 

  32. Buckingham AD, Orr BJ (1967) Q Rev 21:195–212

    Article  CAS  Google Scholar 

  33. McLean AD, Yoshimine M (1967) J Chem Phys 47:1927–1935

    Article  CAS  Google Scholar 

  34. Tsunekawa T, Yamaguchi K (1992) J Phys Chem 96:10268–10275

    Article  CAS  Google Scholar 

  35. Frisch MJ et al (2009) Gaussian 2009 (Revision B.04). Gaussian Inc, Pittsburgh

    Google Scholar 

  36. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275–280

    Article  CAS  Google Scholar 

  37. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:281–289

    Article  CAS  Google Scholar 

  38. Head-Gordon M, Head-Gordon T (1994) Chem Phys Lett 220:122–128

    Article  CAS  Google Scholar 

  39. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–506

    Article  CAS  Google Scholar 

  40. Saebo S, Almlof J (1989) Chem Phys Lett 154:83–89

    Article  CAS  Google Scholar 

  41. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  42. Adamo C, Barone V (1998) J Chem Phys 108:664–675

    Article  CAS  Google Scholar 

  43. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  44. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  45. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  46. Handy NC, Cohen AJ (2001) Mol Phys 99:403–412

    Article  CAS  Google Scholar 

  47. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  48. Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) J Chem Phys 109:6264–6271

    Article  CAS  Google Scholar 

  49. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  Google Scholar 

  50. Van Voorhis T, Scuseria GE (1998) J Chem Phys 109:400–410

    Article  Google Scholar 

  51. Boese AD, Handy NC (2002) J Chem Phys 116:9559–9569

    Article  CAS  Google Scholar 

  52. Becke AD (1996) J Chem Phys 104:1040–1046

    Article  CAS  Google Scholar 

  53. Rey J, Savin A (1998) Int J Quantum Chem 69:581–590

    Article  CAS  Google Scholar 

  54. Wilson PJ, Bradley TJ, Tozer DJ (2001) J Chem Phys 115:9233–9242

    Article  CAS  Google Scholar 

  55. Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:1–4

    Article  Google Scholar 

  56. Cohen AJ, Handy NC (2001) Mol Phys 99:607–615

    Article  CAS  Google Scholar 

  57. Becke AD (1997) J Chem Phys 107:8554–8560

    Article  CAS  Google Scholar 

  58. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  59. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  60. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  61. Asawaroengchai C, Rosenblatt GM (1980) (1980) J Chem Phys 72:2664–2669

    Article  CAS  Google Scholar 

  62. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  63. Vydrov OA, Scuseria GE (2006) J Chem Phys 125:234109

    Article  Google Scholar 

  64. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540–3544

    Article  CAS  Google Scholar 

  65. Grimme S (2006) J Chem Phys 124:034108

    Article  Google Scholar 

  66. Feller D (1996) J Comput Chem 17:1571–1586

    CAS  Google Scholar 

  67. Schafer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577

    Article  Google Scholar 

  68. Young DC (2001) Computational chemistry—a practical guide for applying techniques to real-world problems. Wiley-Interscience, New York, pp 233–234

    Google Scholar 

  69. Champagne B (1996) Chem Phys Lett 261:57–65

    Article  CAS  Google Scholar 

  70. Bartkowiak W, Misiaszek T (2000) Chem Phys 261:353–357

    Article  CAS  Google Scholar 

  71. Hansch C, Leo A, Taft RW (1991) Chem Rev 91:165–195

    Article  CAS  Google Scholar 

  72. Koga T, Saito M, Hoffmeyer RE, Thakkar AJ (1994) J Mol Struct (THEOCHEM) 306:249–260

    Article  Google Scholar 

  73. Thakkar AJ, Koga T, Saito M, Hoffmeyer RE (1993) Int J Quantum Chem 48:343–354

    Article  Google Scholar 

  74. Neto AC, Muniz EP, Centoducatte R, Jorge FE (2005) J Mol Struct (THEOCHEM) 718:219–224

    Article  Google Scholar 

  75. Sadlej AJ (1988) Collect Czech Chem Commun 53:1995–2016

    Article  CAS  Google Scholar 

  76. Sadlej AJ (1991) Theor Chim Acta 79:123–140

    Article  CAS  Google Scholar 

  77. NIST Standard Reference Database Number 101. http://cccbdb.nist.gov. Accessed 13 July 2011.

Download references

Acknowledgments

The authors would like to thank the Brazilian agencies CNPq, CAPES, and FAPEMIG for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Paschoal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 844 kb)

Table S1 includes the electric dipole of polarizability (α, a.u.) for all atoms at Hartree-Fock level. Tables S2, S3, S4 and S5 include the calculated values for electric dipole moment (μ), average polarizability (〈α〉) and total static first hyperpolarizability (βt) at LEVEL OF THEORY/6-31 G(d) for para-nitroaniline, 4-amino-β-nitrostyrene, 4-amino-4′-nitrobiphenyl and 4-amino-4′-nitrostilbene. Tables S6, S7, S8 and S9 include the calculated values for electric dipole moment (μ), average polarizability (〈α〉) and total static first hyperpolarizability (βt) at cam-B3LYP/BASIS SET for para-nitroaniline, 4-amino-β-nitrostyrene, 4-amino-4′-nitrobiphenyl and 4-amino-4′-nitrostilbene. Tables S10 to S15 include the calculated values for para-disubstituted benzenes, 4-β-disubstituted styrenes, 4-4′-disubstituted biphenyls, 4-4′-disubstituted stilbenes, 4-β-disubstituted α-phenylpolyenes oligomers and disubstituted α,ω-diphenylpolyenes oligomers, respectively, at cam-B3LYP/NLO-V, cam-B3LYP/6-31 G(2d) and cam-B3LYP/Def2-SVP levels. Table S16 include the NLO-V basis set for H, B, C, N, O, F, Si, P, S and Cl atoms.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paschoal, D., Dos Santos, H.F. Assessing the quantum mechanical level of theory for prediction of linear and nonlinear optical properties of push-pull organic molecules. J Mol Model 19, 2079–2090 (2013). https://doi.org/10.1007/s00894-012-1644-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1644-4

Keywords

Navigation