Skip to main content
Log in

Modeling the structure and proton transfer pathways of the mutant His-107-Tyr of human carbonic anhydrase II

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We present molecular modeling of the structure and possible proton transfer pathways from the surface of the protein to the zinc-bound water molecule in the active site of the mutant His-107–Tyr of human carbonic anhydrase II (HCAII). No high-resolution structure or crystal structure is available till now for this particular mutant due to its lack of stability at physiological temperature. Our analysis utilizes as starting point a series of structures derived from high-resolution crystal structure of the wild type protein. While many of the structures investigated do not reveal a complete path between the zinc bound water and His-64, several others do indicate the presence of a transient connection even when His-64 is present in its outward conformation. Mutation at the residue 107 also reveals the formation of a new path into the active site. Competing contributions from His-64 sidechain rotation from its outward conformation are also evaluated in terms of optimal path analysis. No indication of a lower catalytic efficiency of the mutant is evident from our results under the condition of thermal stability of the mutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Håkansson K, Carlsson M, Svensson LA, Liljas A (1992) Structure of native and apo carbonic anhydrase II and structure of some of its anion-ligand complexes. J Mol Biol 227(4):1192–1204

    Article  Google Scholar 

  2. Fisher Z, Hernandez Prada JA, Tu C, Duda D, Yoshioka C, An H, Govindasamy L, Silverman DN, McKenna R (2005) Structural and kinetic characterization of active-site histidine as a proton shuttle in catalysis by human carbonic anhydrase II. Biochemistry 44(4):1097–1105. doi:10.1021/bi0480279

    Article  CAS  Google Scholar 

  3. Duda D, Govindasamy L, Agbandje-McKenna M, Tu C, Silverman DN, McKenna R (2003) The refined atomic structure of carbonic anhydrase II at 1.05 A resolution: implications of chemical rescue of proton transfer. Acta Crystallogr D Biol Crystallogr 59(Pt 1):93–104

    Article  Google Scholar 

  4. Silverman DN, McKenna R (2007) Solvent-mediated proton transfer in catalysis by carbonic anhydrase. Acc Chem Res 40(8):669–675. doi:10.1021/ar7000588

    Article  CAS  Google Scholar 

  5. Roy A, Taraphder S (2006) Proton transfer pathways in the mutant His-64-Ala of human carbonic anhydrase II. Biopolymers 82(6):623–630. doi:10.1002/Bip.20516

    Article  CAS  Google Scholar 

  6. Roy A, Taraphder S (2007) Identification of proton-transfer pathways in human carbonic anhydrase II. J Phys Chem B 111(35):10563–10576. doi:10.1021/Jp073499t

    Article  CAS  Google Scholar 

  7. Steiner H, Jonsson BH, Lindskog S (1975) The catalytic mechanism of carbonic anhydrase. Hydrogen-isotope effects on the kinetic parameters of the human C isoenzyme. Eur J Biochem 59(1):253–259

    Article  CAS  Google Scholar 

  8. Silverman DN (2000) Marcus rate theory applied to enzymatic proton transfer. Biochim Biophys Acta 1458(1):88–103

    Article  CAS  Google Scholar 

  9. Silverman DN, Lindskog S (1988) Acc Chem Res 21:30-36

    Article  CAS  Google Scholar 

  10. Forsman C, Behravan G, Jonsson BH, Liang ZW, Lindskog S, Ren XL, Sandstrom J, Wallgren K (1988) Histidine 64 is not required for high CO2 hydration activity of human carbonic anhydrase II. FEBS Lett 229(2):360–362

    Article  CAS  Google Scholar 

  11. Tu CK, Silverman DN, Forsman C, Jonsson BH, Lindskog S (1989) Role of histidine 64 in the catalytic mechanism of human carbonic anhydrase II studied with a site-specific mutant. Biochemistry 28(19):7913–7918

    Article  CAS  Google Scholar 

  12. Roy A, Taraphder S (2008) A theoretical study on the detection of proton transfer pathways in some mutants of human carbonic anhydrase II. J Phys Chem B 112(43):13597–13607. doi:10.1021/Jp0757309

    Article  CAS  Google Scholar 

  13. Tashian RE (1989) The carbonic anhydrases: widening perspectives on their evolution, expression and function. Bioessays 10(6):186–192. doi:10.1002/bies.950100603

    Article  CAS  Google Scholar 

  14. Eriksson AE, Jones TA, Liljas A (1988) Refined structure of human carbonic anhydrase II at 2.0 A resolution. Proteins 4(4):274–282. doi:10.1002/prot.340040406

    Article  CAS  Google Scholar 

  15. Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE (1983) Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci USA 80(9):2752–2756

    Article  CAS  Google Scholar 

  16. Tu C, Couton JM, Van Heeke G, Richards NG, Silverman DN (1993) Kinetic analysis of a mutant (His107– > Tyr) responsible for human carbonic anhydrase II deficiency syndrome. J Biol Chem 268(7):4775–4779

    CAS  Google Scholar 

  17. Venta PJ, Welty RJ, Johnson TM, Sly WS, Tashian RE (1991) Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His––Tyr): complete structure of the normal human CA II gene. Am J Hum Genet 49(5):1082–1090

    CAS  Google Scholar 

  18. Almstedt K, Lundqvist M, Carlsson J, Karlsson M, Persson B, Jonsson BH, Carlsson U, Hammarstrom P (2004) Unfolding a folding disease: folding, misfolding and aggregation of the marble brain syndrome-associated mutant H107Y of human carbonic anhydrase II. J Mol Biol 342:619–633. doi:10.1016/j.jmb.2004.07.024

    Article  CAS  Google Scholar 

  19. Garcia AE, Hummer G, Soumpasis DM (1997) Hydration of an alpha-helical peptide: comparison of theory and molecular dynamics simulation. Proteins 27(4):471–480

    Article  CAS  Google Scholar 

  20. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. doi:10.1002/Jcc.20289

    Article  CAS  Google Scholar 

  21. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14(1):33–38

    CAS  Google Scholar 

  22. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  CAS  Google Scholar 

  23. Feller S, Zhang Y, Pastor R, Brooks B (1995) J Chem Phys 103:4613

    Article  CAS  Google Scholar 

  24. Taraphder S, Hummer G (2003) Protein side-chain motion and hydration in proton-transfer pathways. Results for cytochrome p450cam. J Am Chem Soc 125(13):3931–3940. doi:10.1021/ja016860c

    Article  CAS  Google Scholar 

  25. Dijkstra EW (1959) Numer Math 1:269-271

    Article  Google Scholar 

  26. Taraphder S, Hummer G (2003) Dynamic proton transfer pathways in proteins: role of sidechain conformational fluctuations. Physica A 318(1–2):293–301

    Article  CAS  Google Scholar 

  27. Fisher SZ, Maupin CM, Budayova-Spano M, Govindasamy L, Tu C, Agbandje-McKenna M, Silverman DN, Voth GA, McKenna R (2007) Atomic crystal and molecular dynamics simulation structures of human carbonic anhydrase II: insights into the proton transfer mechanism. Biochemistry 46(11):2930–2937. doi:10.1021/bi062066y

    Article  CAS  Google Scholar 

  28. Maupin CM, McKenna R, Silverman DN, Voth GA (2009) Elucidation of the proton transport mechanism in human carbonic anhydrase II. J Am Chem Soc 131(22):7598–7608. doi:10.1021/ja8091938

    Article  CAS  Google Scholar 

  29. Lee B, Richards FM (1971) J Mol Biol 55:379

    Article  CAS  Google Scholar 

  30. Hubbard SJ, Thorton JM (1993). NACCESS, Computer program; Department of Biochemistry and Molecular Biology, University College London

  31. Roy A, Taraphder S (2010) Role of protein motions on proton transfer pathways in human carbonic anhydrase II. BBA Proteins Proteomics 1804(2):352–361. doi:10.1016/j.bbapap.2009.09.004

    Article  CAS  Google Scholar 

  32. Maupin CM, Voth GA (2010) Proton transport in carbonic anhydrase: insights from molecular simulation. Biochim Biophys Acta 1804(2):332–341

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work has been supported in part by a grant from the Council for Scientific and Industrial Research (CSIR), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srabani Taraphder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halder, P., Taraphder, S. Modeling the structure and proton transfer pathways of the mutant His-107-Tyr of human carbonic anhydrase II. J Mol Model 19, 289–298 (2013). https://doi.org/10.1007/s00894-012-1549-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1549-2

Keywords

Navigation