Skip to main content
Log in

Aminoglycoside induced nephrotoxicity: molecular modeling studies of calreticulin-gentamicin complex

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Gentamicin is a member of aminoglycoside group of broad spectrum antibiotics. It impairs protein synthesis by binding to A site of the 30S subunit of bacterial ribosomes. One of the main side effects of this drug is nephrotoxicity. The drug is known to bind to calreticulin, a chaperone essential for the folding of glycosylated proteins. We provide a detailed structural insight of the calreticulin-gentamicin complex by molecular modeling and the binding of the drug in the presence of explicit solvent was analyzed by molecular dynamics simulation. The gentamicin molecule binds to the lectin site of the calreticulin and lies in the concave channel formed by the long beta sheets. It makes interactions with residues Tyr109, Asp125, Asp135, Asp317 and Trp319 which are crucial for the chaperone function of the calreticulin. The superimposing of the modeled complex with the only available crystal structure complex of calreticulin with a tetrasaccharide (Glc1Man3) shows interesting features. First, the rings of the gentamicin occupy the positions of glucose and the first two mannose sugars of the tetrasaccharide molecule. Second, the oxygen atoms of the glycosidic linkage of these two ligands have a positional deviation of 1.3 Ǻ. The predicted binding constant of 16.9 μM is in accordance with the previous kinetic study experiments. The details therefore, strongly implicate gentamicin as a competitive inhibitor of sugar binding with calreticulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABNR:

Adopted basis set Newton-Raphson

CHARMM:

Chemistry at Harvard molecular mechanics

PROCHECK:

Protein structure check

PDB:

Protein Data Bank

r.m.s:

root mean square

MMFF:

Merck molecular force field

References

  1. Rea RS, Capitano B (2007) Semin Respir Crit Care Med 28:596–603

    Article  Google Scholar 

  2. Durante-Mangoni E, Grammatikos A, Utili R, Falagas ME (2009) Int J Antimicrob Agents 33:201–205

    Article  CAS  Google Scholar 

  3. Davies J, Davis BD (1968) J Biol Chem 243:3312–3316

    CAS  Google Scholar 

  4. Oliveira JF, Silva CA, Barbieri CD, Oliveira GM, Zanetta DM et al. (2009) Antimicrob Agents Chemother 53:2887–2891

    Article  CAS  Google Scholar 

  5. Quiros Y, Vicente-Vicente L, Morales AI, López-Novoa JM, López-Hernández FJ (2011) Toxicol Sci 119:245–256

    Article  CAS  Google Scholar 

  6. Martínez-Salgado C, López-Hernández FJ, López-Novoa JM (2007) Toxicol Appl Pharmacol 223:86–98

    Article  Google Scholar 

  7. Servais H, Ortiz A, Devuyst O, Denamur S, Tulkens PM et al. (2008) Apoptosis 13:11–32

    Article  CAS  Google Scholar 

  8. Walker PD, Barri Y, Shah SV (1999) Ren Fail 21:433–442

    Article  CAS  Google Scholar 

  9. Whelton A (1979) Prog Clin Biol Res 35:33–41

    CAS  Google Scholar 

  10. Morales AI, Arévalo M, Pérez-Barriocanal F (2000) Nefrologia 20:408–414

    CAS  Google Scholar 

  11. Horibe T, Matsui H, Tanaka M, Nagai H, Yamaguchi Y et al. (2004) Biochem Biophys Res Commun 323:281–287

    Article  CAS  Google Scholar 

  12. Balakumar P, Rohilla A, Thangathirupathi A (2010) Pharmacol Res 62:179–186

    Article  CAS  Google Scholar 

  13. Koslov G, Pocanschi CL, Rosenauer A, Bastos-Aristizabal S, Gorelik A et al. (2010) J Biol Chem 285:38612–38620

    Article  Google Scholar 

  14. Accelrys Software Inc (2003) Cerius2 modeling environment, release 4.7. Accelrys Software Inc, San Diego

    Google Scholar 

  15. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  16. Momany FA, Rone R (1992) J Comput Chem 13:888–900

    Article  CAS  Google Scholar 

  17. Halgren TA (1996) J Comput Chem 17:490–519

    Article  CAS  Google Scholar 

  18. Venkatachalam CM, Jiang X, Oldfield T, Waldman M (2003) J Mol Graph Model 21:289–307

    Article  CAS  Google Scholar 

  19. Mayo SL, Olafson BD, Goddard WA III (1990) J Phys Chem 94:8897–8909

    Article  CAS  Google Scholar 

  20. Krammer A, Kirchhoff PD, Jiang X, Venkatachalam CM, Waldman M (2005) J Mol Graph Model 23:395–407

    Article  CAS  Google Scholar 

  21. Sönnichsen B, Füllekrug J, Van Nguyen P, Diekmann W, Robinson DG, Mieskes G (1994) J Cell Sci 107:2705–2717

    Google Scholar 

  22. Ware FE, Vassilakos A, Peterson PA, Jackson MR, Lehrman MA, Williams DB (1995) J Biol Chem 270:4697–4704

    Article  CAS  Google Scholar 

  23. Spiro RG, Zhu Q, Bhoyroo V, Soling HD (1996) J Biol Chem 271:11588–11594

    Article  CAS  Google Scholar 

  24. Vassilakos A, Cohen Doyle MF, Peterson PA, Jackson MR, Williams DB (1996) EMBO J 15:1495–1506

    CAS  Google Scholar 

  25. Kapoor M, Srinivas H, Kandiah E, Gemma E, Ellgaard L et al. (2003) J Biol Chem 278:6194–6200

    Article  CAS  Google Scholar 

  26. Thomson SP, Williams DB (2005) Cell Stress Chaperones 10:242–251

    Article  CAS  Google Scholar 

  27. Gopalakrishnapai J, Gupta G, Karthikeyan T, Sinha S, Kandiah E et al. (2006) Biochem Biophys Res Commun 351:14–20

    Article  CAS  Google Scholar 

  28. Kapoor M, Ellgaard L, Gopalakrishnapai J, Schirra C, Gemma E et al. (2004) Biochemistry 43:97–106

    Article  CAS  Google Scholar 

  29. Schrag JD, Bergeron JJ, Li Y, Borisova S, Hahn M et al. (2001) Mol Cell 8:633–644

    Article  CAS  Google Scholar 

  30. Das U, Hariprasad G, Ethayathulla AS, Manral P, Das TK et al. (2007) PLoS One 2:e1176

    Article  Google Scholar 

  31. Kaufman RJ (1999) Genes Dev 13:1211–1233

    Article  CAS  Google Scholar 

  32. Malhotra JD, Kaufman RJ (2007) Antioxid Redox Signal 9:2277–2293

    Article  CAS  Google Scholar 

  33. Yoshida H (2007) FEBS J 274:630–658

    Article  CAS  Google Scholar 

  34. Kitamura M (2008) Clin Exp Nephrol 12:317–325

    Article  CAS  Google Scholar 

  35. Peyrou M, Hanna PE, Cribb AE (2007) Toxicol Sci 99:346–353

    Article  CAS  Google Scholar 

  36. Tablan OC, Reyes MP, Rintelmann WF, Lerner AM (1984) J Infect Dis 149:257–263

    Article  CAS  Google Scholar 

  37. Gregersen N, Bross P (2010) Mol Biol 648:3–23

    CAS  Google Scholar 

  38. Miyazaki T, Sagawa R, Honma T, Noguchi S, Harada T, Komatsuda A et al. (2004) J Biol Chem 279:17295–17300

    Article  CAS  Google Scholar 

  39. Yamamoto S, Nakano S, Owari K, Fuziwara K, Ogawa N et al. (2010) FEBS Lett 584:645–651

    Article  CAS  Google Scholar 

  40. Hsu DZ, Li YH, Chu PY, Periasamy S, Liu MY (2011) Antimicrob Agents Chemother 55:2532–2536

    Article  CAS  Google Scholar 

  41. Patel MB, Deshpande S, Shah G (2011) Ren Fail 33:341–347

    Article  Google Scholar 

  42. Knauer SK, Heinrich UR, Bier C, Habtemichael N, Docter D et al. (2010) Cell Death Dis 1e51

  43. Chen YC, Chen CH, Hsu YH, Chen TH, Sue YM et al. (2011) Eur J Pharmacol 658:213–218

    Article  CAS  Google Scholar 

  44. Muthuraman A, Singla SK, Rana A, Singh A, Sood S (2011) Yakugaku Zasshi 131:437–443

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The ‘Pool Officer fellowship’ to GH from the Council of Scientific and Industrial Research is acknowledged. The financial support given to the Biomedical Informatics Center at the institute by the Indian Council of Medical Research, Government of India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alagiri Srinivasan.

Additional information

Gururao Hariprasad and Manoj Kumar have contributed equally in the paper

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. SI

Sequence homology studies of calreticulin from different species within the mammalian group. Amino acid numbers are given at the end of every sequence block. The mouse calreticulin sequence whose structure is considered for the docking studies is shown in green. % identity and sequence accession numbers are given at the end of the respective sequences. The sequences are of mouse, Mus muscullus (Mm); rat, Rattus norvegius (Rn), rabbit, Oryctolagus cuniculus (Oc), human, Homo sapiens (Hs); pig, Sus scrofa (Ss) and cow, Bos taurus (Bt). ‘*’ are marked for identical residues, ‘:’ are marked for conserved residues and ‘.’ are marked for semi-conserved residues. The conserved cysteines are shown in yellow and the residues making interactions with the sugar in the crystal structure complex (PDB ID: 3O0W) are shown in bold. The residues that have been removed from the protein are shown in gray. A few dashes are introduced to enhance similarities. (JPEG 291 kb)

High resolution image (TIFF 101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hariprasad, G., Kumar, M., Rani, K. et al. Aminoglycoside induced nephrotoxicity: molecular modeling studies of calreticulin-gentamicin complex. J Mol Model 18, 2645–2652 (2012). https://doi.org/10.1007/s00894-011-1289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1289-8

Keywords

Navigation