Skip to main content

Advertisement

Log in

Endoplasmic reticulum stress in the kidney

  • Review Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Endoplasmic reticulum (ER) stress is involved in a wide range of pathological circumstances including neurodegenerative disorders, diabetes mellitus, ischemic injury, cancers, atherosclerosis, inflammation, infection, toxicity of chemicals and metals, and psychotic diseases. ER stress is also involved in some physiological events including development of particular cell types. A number of pathophysiological triggers cause accumulation of unfolded proteins in the ER, i.e., ER stress. In response to accumulation of unfolded/misfolded proteins, cells adapt themselves to the stress conditions via a coordinated adaptive program, the unfolded protein response (UPR). UPR is a double-edged sword. It induces both prosurvival and proapoptotic signaling. It also triggers both proinflammatory and anti-inflammatory signals. In this review, I summarize current knowledge on putative, pathophysiological roles of ER stress in the kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee AS. The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci. 2001;26:504–10.

    Article  CAS  Google Scholar 

  2. Kaufman RJ. Orchestrating the unfolded protein response in health and disease. J Clin Invest. 2002;110:1389–98.

    Article  CAS  Google Scholar 

  3. Yoshida H. ER stress and diseases. FEBS J. 2007;274:630–58.

    Article  CAS  Google Scholar 

  4. Wu J, Kaufman RJ. From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ. 2006;13:374–84.

    Article  CAS  Google Scholar 

  5. Kim R, Emi M, Tanabe K, Murakami S. Role of the unfolded protein response in cell death. Apoptosis. 2006;11:5–13.

    Article  CAS  Google Scholar 

  6. Ma Y, Brewer JW, Diehl JA, Hendershot LM. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol. 2002;318:1351–65.

    Article  CAS  Google Scholar 

  7. Zong WX, Li C, Hatzivassiliou G, Lindsten T, Yu QC, Yuan J, et al. Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol. 2003;162:59–69.

    Article  CAS  Google Scholar 

  8. Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol. 2003;4:552–65.

    Article  CAS  Google Scholar 

  9. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol. 2001;21:1249–59.

    Article  CAS  Google Scholar 

  10. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000;287:664–6.

    Article  CAS  Google Scholar 

  11. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 2002;16:1345–55.

    Article  CAS  Google Scholar 

  12. Sekine Y, Takeda K, Ichijo H. The ASK1-MAP kinase signaling in ER stress and neurodegenerative diseases. Curr Mol Med. 2006;6:87–97.

    Article  CAS  Google Scholar 

  13. Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH. Autocrine tumor necrosis factor-α links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression. Mol Cell Biol. 2006;26:3071–84.

    Article  CAS  Google Scholar 

  14. Kaneko M, Niinuma Y, Nomura Y. Activation signal of nuclear factor-κB in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol Pharm Bull. 2003;26:931–5.

    Article  CAS  Google Scholar 

  15. Deng J, Lu PD, Zhang Y, Scheuner D, Kaufman RJ, Sonenberg N, et al. Translational repression mediates activation of nuclear factor-κB by phosphorylated translation initiation factor 2. Mol Cell Biol. 2004;24:10161–8.

    Article  CAS  Google Scholar 

  16. Jiang HY, Wek SA, McGrath BC, Scheuner D, Kaufman RJ, Cavener DR, et al. Phosphorylation of the α subunit of eukaryotic initiation factor 2 is required for activation of NF-κB in response to diverse cellular stresses. Mol Cell Biol. 2003;23:5651–63.

    Article  CAS  Google Scholar 

  17. Hayakawa K, Hiramatsu N, Okamura M, Yao J, Paton AW, Paton JC, et al. Blunted activation of NF-κB and NF-κB-dependent gene expression by geranylgeranylacetone: involvement of unfolded protein response. Biochem Biophys Res Commun. 2008;365:47–53.

    Article  CAS  Google Scholar 

  18. Takano Y, Hiramatsu N, Okamura M, Hayakawa K, Shimada T, Kasai A, et al. Suppression of cytokine response by GATA inhibitor K-7174 via unfolded protein response. Biochem Biophys Res Commun. 2007;360:470–5.

    Article  CAS  Google Scholar 

  19. Endo S, Hiramatsu N, Hayakawa K, Okamura M, Kasai A, Tagawa Y, et al. Geranylgeranylacetone, an inducer of the 70-kDa heat shock protein (HSP70), elicits unfolded protein response and coordinates cellular fate independently of HSP70. Mol Pharmacol. 2007;72:1337–48.

    Article  CAS  Google Scholar 

  20. Hayakawa K, Hiramatsu N, Okamura M, Yamazaki H, Yao J, Paton AW, Paton JC, Kitamura M. Acquisition of anergy to proinflammatory cytokines in non-immune cells through endoplasmic reticulum stress response: a mechanism for subsidence of inflammation. J Immunol (in press).

  21. Devin A, Lin Y, Yamaoka S, Li Z, Karin M, Liu Z. The α and β subunits of IκB kinase (IKK) mediate TRAF2-dependent IKK recruitment to tumor necrosis factor (TNF) receptor 1 in response to TNF. Mol Cell Biol. 2001;21:3986–94.

    Article  CAS  Google Scholar 

  22. Rush JS, Sweitzer T, Kent C, Decker GL, Waechter CJ. Biogenesis of the endoplasmic reticulum in activated B lymphocytes: temporal relationships between the induction of protein N-glycosylation activity and the biosynthesis of membrane protein and phospholipid. Arch Biochem Biophys. 1991;284:63–70.

    Article  CAS  Google Scholar 

  23. Zhang K, Wong HN, Song B, Miller CN, Scheuner D, Kaufman RJ. The unfolded protein response sensor IRE1α is required at 2 distinct steps in B cell lymphopoiesis. J Clin Invest. 2005;115:268–81.

    Article  CAS  Google Scholar 

  24. Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E, Gravallese EM, et al. Plasma cell differentiation requires the transcription factor XBP1. Nature. 2001;412:300–7.

    Article  CAS  Google Scholar 

  25. Iwakoshi NN, Lee AH, Vallabhajosyula P, Otipoby KL, Rajewsky K, Glimcher LH. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP1. Nat Immunol. 2003;4:321–9.

    Article  CAS  Google Scholar 

  26. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell. 2001;7:1153–63.

    Article  CAS  Google Scholar 

  27. Delepine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier C. EIF2AK3, encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet. 2000;25:406–9.

    Article  CAS  Google Scholar 

  28. Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell. 2001;7:1165–76.

    Article  CAS  Google Scholar 

  29. Reimold AM, Etkin A, Clauss I, Perkins A, Friend DS, Zhang J, et al. An essential role in liver development for transcription factor XBP-1. Genes Dev. 2000;14:152–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin–Lowry syndrome. Cell. 2004;117:387–98.

    Article  CAS  Google Scholar 

  31. Zhang P, McGrath B, Li S, Frank A, Zambito F, Reinert J, et al. The PERK eukaryotic initiation factor 2 α kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol. 2002;22:3864–74.

    Article  CAS  Google Scholar 

  32. Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, et al. Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1:575–82.

    Article  CAS  Google Scholar 

  33. Liu L, Done SC, Khoshnoodi J, Bertorello A, Wartiovaara J, Berggren PO, et al. Defective nephrin trafficking caused by missense mutations in the NPHS1 gene: insight into the mechanisms of congenital nephrotic syndrome. Hum Mol Genet. 2001;10:2637–44.

    Article  CAS  Google Scholar 

  34. Liu XL, Doné SC, Yan K, Kilpeläinen P, Pikkarainen T, Tryggvason K. Defective trafficking of nephrin missense mutants rescued by a chemical chaperone. J Am Soc Nephrol. 2004;15:1731–8.

    Article  CAS  Google Scholar 

  35. Ohashi T, Uchida K, Uchida S, Sasaki S, Nihei H. Intracellular mislocalization of mutant podocin and correction by chemical chaperones. Histochem Cell Biol. 2003;119:257–64.

    CAS  PubMed  Google Scholar 

  36. Fujii Y, Khoshnoodi J, Takenaka H, Hosoyamada M, Nakajo A, Bessho F, et al. The effect of dexamethasone on defective nephrin transport caused by ER stress: a potential mechanism for the therapeutic action of glucocorticoids in the acquired glomerular diseases. Kidney Int. 2006;69:1350–9.

    Article  CAS  Google Scholar 

  37. Cybulsky AV, Takano T, Papillon J, Khadir A, Liu J, Peng H. Complement C5b-9 membrane attack complex increases expression of endoplasmic reticulum stress proteins in glomerular epithelial cells. J Biol Chem. 2002;277:41342–51.

    Article  CAS  Google Scholar 

  38. Cybulsky AV, Takano T, Papillon J, Bijian K. Role of the endoplasmic reticulum unfolded protein response in glomerular epithelial cell injury. J Biol Chem. 2005;280:24396–403.

    Article  CAS  Google Scholar 

  39. Bek MF, Bayer M, Müller B, Greiber S, Lang D, Schwab A, et al. Expression and function of C/EBP homology protein (GADD153) in podocytes. Am J Pathol. 2006;168:20–32.

    Article  CAS  Google Scholar 

  40. Johnson JP, Rokaw MD. Sepsis or ischemia in experimental acute renal failure: what have we learned? New Horiz. 1995;3:608–14.

    CAS  PubMed  Google Scholar 

  41. Hiramatsu N, Kasai A, Du S, Takeda M, Hayakawa K, Okamura M, et al. Rapid, transient induction of ER stress in the liver and kidney after acute exposure to heavy metal: evidence from transgenic sensor mice. FEBS Lett. 2007;581:2055–9.

    Article  CAS  Google Scholar 

  42. Hiramatsu N, Kasai A, Hayakawa K, Yao J, Kitamura M. Real-time detection and continuous monitoring of ER stress in vitro and in vivo by ES-TRAP: evidence for systemic, transient ER stress during endotoxemia. Nucleic Acids Res. 2006;34:e93.

    Article  Google Scholar 

  43. Ueda N, Kaushal GP, Shah SV. Apoptotic mechanisms in acute renal failure. Am J Med. 2000;108:403–15.

    Article  CAS  Google Scholar 

  44. Montie HL, Kayali F, Haezebrouck AJ, Rossi NF, Degracia DJ. Renal ischemia and reperfusion activates the eIF2α kinase PERK. Biochim Biophys Acta. 2005;1741:314–24.

    Article  CAS  Google Scholar 

  45. Bando Y, Tsukamoto Y, Katayama T, Ozawa K, Kitao Y, Hori O, et al. ORP150/HSP12A protects renal tubular epithelium from ischemia-induced cell death. FASEB J. 2004;18:1401–3.

    Article  CAS  Google Scholar 

  46. Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci. 2007;334:115–24.

    Article  Google Scholar 

  47. Liu H, Bowes R. Endoplasmic reticulum stress-associated caspase-12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J Am Soc Nephrol. 2005;16:1985–92.

    Article  CAS  Google Scholar 

  48. Peyrou M, Cribb AE. Effect of endoplasmic reticulum stress preconditioning on cytotoxicity of clinically relevant nephrotoxins in renal cell lines. Toxicol In Vitro. 2007;21:878–86.

    Article  CAS  Google Scholar 

  49. Peyrou M, Hanna PE, Cribb AE. Cisplatin, gentamicin, and p-aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys. Toxicol Sci. 2007;99:346–53.

    Article  CAS  Google Scholar 

  50. Tsutsumi S, Gotoh T, Tomisato W, Mima S, Hoshino T, Hwang HJ, et al. Endoplasmic reticulum stress response is involved in nonsteroidal anti-inflammatory drug-induced apoptosis. Cell Death Differ. 2004;11:1009–16.

    Article  CAS  Google Scholar 

  51. Okamura M, Takano Y, Hiramatsu N, Hayakawa K, Kasai A, Yao J, Kitamura M. Suppression of cytokine response in podocytes by indomethacin: involvement of unfolded protein response (abstract). Proceedings of BMB 2007. 2007;4P-0584.

  52. Maniglia R, Schwartz AB, Moriber-Katz S. Non-steroidal anti-inflammatory nephrotoxicity. Ann Clin Lab Sci. 1988;18:240–52.

    CAS  PubMed  Google Scholar 

  53. Lorz C, Justo P, Sanz A, Subirá D, Egido J, Ortiz A. Paracetamol-induced renal tubular injury: a role for ER stress. J Am Soc Nephrol. 2004;15:380–9.

    Article  CAS  Google Scholar 

  54. Kaloyanides GJ. Antibiotic-related nephrotoxicity. Nephrol Dial Transplant. 1994;9(Suppl 4):130–4.

    PubMed  Google Scholar 

  55. Jin QH, Zhao B, Zhang XJ. Cytochrome c release and endoplasmic reticulum stress are involved in caspase-dependent apoptosis induced by G418. Cell Mol Life Sci. 2004;61:1816–25.

    Article  CAS  Google Scholar 

  56. Williams D, Haragsim L. Calcineurin nephrotoxicity. Adv Chronic Kidney Dis. 2006;13:47–55.

    Article  Google Scholar 

  57. Justo P, Lorz C, Sanz A, Egido J, Ortiz A. Intracellular mechanisms of cyclosporin A-induced tubular cell apoptosis. J Am Soc Nephrol. 2003;14:3072–80.

    Article  CAS  Google Scholar 

  58. Du S, Hiramatsu N, Hayakawa K, Kasai A, Okamura M, Shimada T, et al. Novel, anti-inflammatory potential of cyclosporine A and tacrolimus (FK506) via induction of unfolded protein response (abstract). J Am Soc Nephrol. 2007;18:F-PO587.

    Article  Google Scholar 

  59. Jeong SH, Habeebu SS, Klaassen CD. Cadmium decreases gap junctional intercellular communication in mouse liver. Toxicol Sci. 2000;57:156–66.

    Article  CAS  Google Scholar 

  60. Thevenod F. Nephrotoxicity and the proximal tubule. Insights from cadmium. Nephron Physiol. 2003;93:87–93.

    Article  Google Scholar 

  61. Liu F, Inageda K, Nishitai G, Matsuoka M. Cadmium induces the expression of Grp78, an endoplasmic reticulum molecular chaperone, in LLC-PK1 renal epithelial cells. Environ Health Perspect. 2006;114:859–64.

    Article  CAS  Google Scholar 

  62. Yokouchi M, Hiramatsu N, Hayakawa K, Kasai A, Takano Y, Yao J, et al. Atypical, bidirectional regulation of cadmium-induced apoptosis via distinct signaling of unfolded protein response. Cell Death Differ. 2007;14:1467–74.

    Article  CAS  Google Scholar 

  63. Gennari A, Cortese E, Boveri M, Casado J, Prieto P. Sensitive endpoints for evaluating cadmium-induced acute toxicity in LLC-PK1 cells. Toxicology. 2003;183:211–20.

    Article  CAS  Google Scholar 

  64. Prozialeck WC, Lamar PC. Effects of glutathione depletion on the cytotoxic actions of cadmium in LLC-PK1 cells. Toxicol Appl Pharm. 2005;134:285–95.

    Article  Google Scholar 

  65. Thevenod F, Friedmann JM, Katsen AD, Hauser IA. Up-regulation of multidrug resistance P-glycoprotein via NF-κB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis. J Biol Chem. 2000;275:1887–96.

    Article  CAS  Google Scholar 

  66. Yokouchi M, Hiramatsu N, Hayakawa K, Okamura M, Du S, Kasai A, et al. Involvement of selective reactive oxygen species upstream ofproapoptotic branches of unfolded protein response. J Biol Chem. 2008;283:4252–60.

    Article  CAS  Google Scholar 

  67. Plisov SY, Ivanov SV, Yoshino K, Dove LF, Plisova TM, Higinbotham KG, et al. Mesenchymal-epithelial transition in the developing metanephric kidney: gene expression study by differential display. Genesis. 2000;27:22–31.

    Article  CAS  Google Scholar 

  68. Kubota K, Niinuma Y, Kaneko M, Okuma Y, Sugai M, Omura T, et al. Suppressive effects of 4-phenylbutyrate on the aggregation of Pael receptors and endoplasmic reticulum stress. J Neurochem. 2006;97:1259–68.

    Article  CAS  Google Scholar 

  69. Qi X, Hosoi T, Okuma Y, Kaneko M, Nomura Y. Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol Pharmacol. 2004;66:899–908.

    Article  CAS  Google Scholar 

  70. Sawada N, Yao J, Hiramatsu N, Hayakawa K, Araki I, Takeda M, Kitamura M. Involvement of hypoxia-triggered endoplasmic reticulum stress in outlet obstruction-induced apoptosis in the urinary bladder. Lab Invest. 2008;88:553–63

    Article  CAS  Google Scholar 

  71. Takizawa S, Izuhara Y, Kitao Y, Hori O, Ogawa S, Morita Y, et al. A novel inhibitor of advanced glycation and endoplasmic reticulum stress reduces infarct volume in rat focal cerebral ischemia. Brain Res. 2007;1183:124–37.

    Article  CAS  Google Scholar 

  72. Izuhara Y, Nangaku M, Takizawa S, Takahashi S, Shao J, Oishi H, et al. A novel class of advanced glycation inhibitors ameliorates renal and cardiovascular damage in experimental rat models. Nephrol Dial Transplant. 2008;23:497–509.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Kitamura.

Additional information

Presented at the 37th Eastern Regional Meeting of the Japanese Society of Nephrology.

About this article

Cite this article

Kitamura, M. Endoplasmic reticulum stress in the kidney. Clin Exp Nephrol 12, 317–325 (2008). https://doi.org/10.1007/s10157-008-0060-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-008-0060-7

Keywords

Navigation