Skip to main content
Log in

In silico analysis of Pycnoporus cinnabarinus laccase active site with toxic industrial dyes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Laccases belong to multicopper oxidases, a widespread class of enzymes implicated in many oxidative functions in various industrial oxidative processes like production of fine chemicals to bioremediation of contaminated soil and water. In order to understand the mechanisms of substrate binding and interaction between substrates and Pycnoporus cinnabarinus laccase, a homology model was generated. The resulted model was further validated and used for docking studies with toxic industrial dyes- acid blue 74, reactive black 5 and reactive blue 19. Interactions of chemical mediators with the laccase was also examined. The docking analysis showed that the active site always cannot accommodate the dye molecules, due to constricted nature of the active site pocket and steric hindrance of the residues whereas mediators are relatively small and can easily be accommodated into the active site pocket, which, thereafter leads to the productive binding. The binding properties of these compounds along with identification of critical active site residues can be used for further site-directed mutagenesis experiments in order to identify their role in activity and substrate specificity, ultimately leading to improved mutants for degradation of these toxic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)

PROSA:

Protein structure analysis

NAMD:

Nanoscale molecular dynamics

PDB:

Protein data bank

RMSD:

Root mean square deviation

CASTp:

Computed atlas of surface topography of proteins

GOLD:

Genetic optimization for ligand docking

MD:

Molecular dynamics

References

  1. Yoshida H (1883) Chemistry of lacquer (urichi). J Chem Soc Trans 43:472–486

    Article  CAS  Google Scholar 

  2. Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179:145–150

    CAS  Google Scholar 

  3. Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    Article  CAS  Google Scholar 

  4. Caparros-Ruiz D, Fornale S, Civardi L, Puigdomenech P, Rigau J (2006) Isolation and characterisation of a family of laccases in maize. Plant Sci 171:217–225

    Article  CAS  Google Scholar 

  5. Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI (1996) A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochim Biophys Acta 1292:303–311

    Article  Google Scholar 

  6. Eggert C, Temp U, Eriksson KE (1996) The lignolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the Laccase. Appl Environ Microbiol 62:1151–1158

    CAS  Google Scholar 

  7. Kanbi LD, Antonyuk S, Hough MA, Hall JF, Dodd FE, Hasnain SS (2002) Crystal structures of the Met148Leu and Ser86Asp mutants of rusticyanin from Thiobacillus ferrooxidans: insights into the structural relationship with the cupredoxins and the multi copper proteins. J Mol Biol 320:263–275

    Article  CAS  Google Scholar 

  8. Solomon EI, Chen P, Metz M, Lee SK, Palmer AE (2001) Oxygen binding, activation, and reduction to water by copper proteins. Angew Chem Int Edn 40:4570–4590

    Article  CAS  Google Scholar 

  9. Ducros V, Davies JG, Lawson DM, Brown SH, Østergaard P, Pedersen AH, Schneider P, Yaver DS, Brzozowski AM (1987) Crystallisation and preliminary X-ray analysis of the laccase from Coprinus cinereus. Acta Crystallogr 53:605–607

    Google Scholar 

  10. Ducros V, Brzozowski AM, Wilson KS, Brown SH, Østergaard P, Schneider P, Yaver AH, Pederson AH, Davies GJ (1998) Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 Å resolution. Nat Struct Biol 5:310–316

    Article  CAS  Google Scholar 

  11. Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-angstrom resolution containing a full complement of coppers. J Biol Chem 277:37663–37669

    Article  CAS  Google Scholar 

  12. Thurston CF (1994) The structure and function of fungal Laccase. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  13. Camarero S, Ibarra D, Martínez MJ, Martínez AT (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol 71:1775–1784

    Article  CAS  Google Scholar 

  14. Enguita FJ, Martins LO, Henriques AO, Carrondo MA (2003) Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. J Biol Chem 278:19416–19425

    Article  CAS  Google Scholar 

  15. Hakulinen N, Kiiskinen LL, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J (2002) Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Biol 9:601–605

    CAS  Google Scholar 

  16. Lyashenko AV, Bento I, Zaitsev VN, Zhukhlistova NE, Zhukova YN, Gabdoulkhakov AG, Morgunova EY, Voelter W, Kachalova GS, Stepanova EV, Koroleva OG, Lamzin VS, Tishkov VI, Betzel C, Lindley PF, Mikhailov AB (2006) X-ray structural studies of the fungal laccase from Cerrena maxima. J Biol Inorg Chem 11:963–973

    Article  CAS  Google Scholar 

  17. Messerschmidt A, Huber R (1990) The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships. Eur J Biochem 187:341–352

    Article  CAS  Google Scholar 

  18. Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2606

    Article  CAS  Google Scholar 

  19. Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102

    Article  CAS  Google Scholar 

  20. Verma AK, Raghukumar C, Verma P, Shouche YS, Naik CG (2010) Four marine-derived fungi for bioremediation of raw textile mill effluents. Biodegradation 2:217–233

    Article  Google Scholar 

  21. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  22. Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  23. Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) Procheck: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  24. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in threedimensional structures of proteins. Nucleic Acids Res 35:407–410

    Article  Google Scholar 

  25. Willard L, Ranjan A, Zhang H, Monzavi H, Boyko RF, Sykes BD, Wishart DS (2003) VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res 31:3316–3319

    Article  CAS  Google Scholar 

  26. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  27. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 6:1–11

    Google Scholar 

  28. Pedretti A, Villa L, Vistoli G (2004) VEGA - An open platform to develop chemo-bioinformatics applications, using plug-in architecture and script" programming. J Comput Aided Mater Des 18:167–173

    Article  CAS  Google Scholar 

  29. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  30. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:116–118

    Article  Google Scholar 

  31. Jones G, Willett P, Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 245:43–53

    Article  CAS  Google Scholar 

  32. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

  33. Verdonk ML, Cole JC, Hartshorn MJC, Murray W, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623

    Article  CAS  Google Scholar 

  34. Phogat N, Vindal V, Kumar V, Krishna KI, Nirmal KP (2010) Sequence analysis, in silico modeling and docking studies of Caffeoyl CoA-O-methyltransferase of Populus trichopora. J Mol Model 16:1461–1471

    Article  CAS  Google Scholar 

  35. Nirmal KP, Vindal V, Kumar V, Ashish K, Phogat N, Kumar M (2011) Structural and docking studies of Leucaena leucocephala Cinnamoyl CoA reductase. J Mol Model 17:533–541

    Article  Google Scholar 

Download references

Acknowledgments

Research in VV’s laboratory is supported by XI OBC plan grant of University of Hyderabad. The authors wish to thank Dr. A.K. Verma for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmal K. Prasad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, N.K., Vindal, V., Narayana, S.L. et al. In silico analysis of Pycnoporus cinnabarinus laccase active site with toxic industrial dyes. J Mol Model 18, 2013–2019 (2012). https://doi.org/10.1007/s00894-011-1215-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1215-0

Keywords

Navigation