Skip to main content
Log in

Theoretical studies on 2-diazo-4,6-dinitrophenol derivatives aimed at finding superior propellants

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In an attempt to find superior propellants, 2-diazo-4,6-dinitrophenol (DDNP) and its –NO2, –NH2, –CN, –NC, –ONO2, and –NF2 derivatives were studied at the B3LYP/6-311++G** level of density functional theory (DFT). Sensitivity was evaluated using bond dissociation enthalpies (BDEs) and molecular surface electrostatic potentials. The C–NO2 bond appears to be the trigger bond during the thermolysis process for these compounds, except for the –ONO2 and –NF2 derivatives. Electrostatic potential results show that electron-withdrawing substituents make the charge imbalance more anomalous, which may change the strength of the bond, especially the weakest trigger bond. Most of the DDNP derivatives have the impact sensitivities that are higher than that of DDNP, making them favorable for use as solid propellants in micro-rockets. The theoretical densities (ρ), heats of formation (HOFs), detonation energies (Q), detonation pressures (P), and detonation velocities (D) of the compounds were estimated. The effects of various substituent groups on ρ, HOF, Q, D, and P were investigated. Some derivatives exhibit perfect detonation properties. The calculated relative specific impulses (I r,sp) of all compounds except for –NH2 derivatives were higher than that of DDNP, and also meet the requirements of propellants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rossi C, Briand D, Dumonteuil M, Camps T, Pham PQ, Rooij NF (2006) Sens Actuator A 126:241–252

    Article  Google Scholar 

  2. Cass S (2001) IEEE Spectr 7:56–61

    Google Scholar 

  3. Tanaka S, Hosokawa R, Tokudome S, Hori K, Saito H, Watanabe M, Esashi M (2003) Trans Japan Soc Aero Space Sci 46:47–51

    Article  CAS  Google Scholar 

  4. Takahashi K, Okada T, Ikuta T, Nagayama K, Yamada Y, Mitarai Y (2006) In: Proc Conf on Aerospace Propulsion, Beijing, China April 20-30, 2006, CD-ROM AJCPP2006-22174

  5. Takahashi K, Okada T, Ikuta T, Nishiyama T, Nagayama K, Yamada Y, Mitarai Y (2006) Proc 25th Int Symp on Space Technology and Science, Kanazawa, Japan, 4–11 June 2006, pp 155–160

  6. Espinosa H, Hrabe N, Hung A, Mehling J, Merkle A (2002) http://clifton.mech.northwestern.edu/~me381/project/02fall/Microrockets.pdf

  7. Orieux S, Rossi C, Estève D (2002) Sens Actuator A 101:383–391

    Article  Google Scholar 

  8. Teasdale D, Pister KSJ (2000) Masters report. University of California, Berkeley (see http://bsac.eecs.berkeley.edu)

  9. Larangot B, Rossi C, Camps T, Berthold A, Pham PQ, Briand D, Rooij NF, Puig-Vidal M, Miribel P, Montané E, López E, Samitier J (2002) Solid propellant micro rockets—towards a new type of power MEMS. In: Proc Nanotech AIAA, Houston, TX, USA, 9–12 Sept 2002

  10. Chaalane J, Rossi C, Estève D (2006) Nanotechnology 3:340–343

    CAS  Google Scholar 

  11. Sudweeks WB, Chen FF, McPherson MD (2007) Chemical explosives and rocket propellants. In: Kent JA (ed) Kent and Riegel’s handbook of industrial chemistry and biotechnology. Springer, Berlin, pp 1742–1793

  12. Takahashi K, Ikuta T, Okada T, Nagayama K (2006) In: 6th Int Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, Berkeley, CA, USA, 29 Nov–1 Dec 2006, pp 65–68

  13. Takahashi K (2006) In: Proc CANEUS 2006 Conf Micro-Nano Technologies for Aerospace Applications, Toulouse, France, 27 Aug–1 Sept 2006, pp 1–5

  14. Zhang K, Chou SK, Ang S (2007) J Micromech Microeng 17:322–332

    Article  CAS  Google Scholar 

  15. Okada T, Yamada Y, Ebisuzaki H, Ikuta T, Takahashi K (2004) In: Proc PowerMEMS, Kyoto, Japan, 28–30 Nov 2004, pp 56–59

  16. Yang ZW, Liua YC, Liu DC, Yan LW, Chen J (2010) J Hazard Mater 177:938–943

    Article  CAS  Google Scholar 

  17. Griefs P (1858) Justus Liebigs Ann Chem 106:123–125

    Google Scholar 

  18. Clark LV (1933) Ind Eng Chem 25:663–669

    Google Scholar 

  19. Chaalane J, Rossi C, Estève D (2007) Sens Actuator A 138:161–166

    Article  Google Scholar 

  20. Okada T, Yamada Y, Mitarai Y, Ikuta T, Nagayama K, Takahashi K (2005) In: Proc PowerMEMS, Tokyo, Japan, 28–30 Nov 2005, pp 161–164

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Petersson GA Ochterski J, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2004) Gaussian 03, revision C.02. Gaussian Inc., Wallingford

  22. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  23. Politzer P, Murray JS (1998) J Mol Struct THEOCHEM 425:107–114

    Article  Google Scholar 

  24. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  25. Brinck T, Murray JS, Politzer P (1992) Mol Phys 76:609–617

    Article  CAS  Google Scholar 

  26. Murray JS, Brinck T, Lane P, Paulsen K, Politzer P (1994) J Mol Struct THEOCHEM 307:55–64

    Article  Google Scholar 

  27. Gong XD (2007) Potden v.2.0, Nanjing University of Science and Technology, Nanjing

  28. Liu Y, Gong XD, Wang LJ, Wang GX, Xiao HM (2011) J Phys Chem A 115:1754–1762

    Article  CAS  Google Scholar 

  29. Xu XJ, Xiao HM, Ju XH, Gong XD, Zhu WH (2006) J Phys Chem A 110:5929–5933

    Article  CAS  Google Scholar 

  30. Qiu L, Xiao HM, Gong XD, Ju XH, Zhu WH (2006) J Phys Chem A 110:3797–3807

    Article  CAS  Google Scholar 

  31. Wang GX, Shi CH, Gong XD, Xiao HM (2009) J Phys Chem A 113:1318–1326

    Article  CAS  Google Scholar 

  32. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) Mol Phys 107:2095–2101

    Article  CAS  Google Scholar 

  33. Accelrys, Inc. (2008) Materials Studio 4.4. Accelrys, Inc., San Diego

  34. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  35. Mayer R (1987) Explosives. VCH, Weinheim

  36. Zheng W, Wong NB, Liang X, Long X, Tian A (2004) J Phys Chem A 108:840–847

    Article  CAS  Google Scholar 

  37. Zheng W, Wong NB, Wang W, Zhou G, Tian A (2004) J Phys Chem A 108:97–106

    Article  CAS  Google Scholar 

  38. Holl G, Klapotke TM, Polborn K, Rienacker C (2003) Propellants Explos Pyrotech 28:153–156

    Article  CAS  Google Scholar 

  39. Harcourt RD (1982) Qualitative valence bond descriptions of electron-rich molecules (Lecture Notes in Chemistry, vol 30). Springer, Berlin

  40. Sikder AK, Sikder N (2004) J Hazard Mater 112:1–15

    Article  CAS  Google Scholar 

  41. Rice BM, Byrd EFC (2006) J Mater Res 21:2444–2452

    Article  CAS  Google Scholar 

  42. Rice BM, Hare J (2002) J Phys Chem A 106:1770–1783

    Article  CAS  Google Scholar 

  43. Li JS (2010) J Hazard Mater 174:728–733

    Article  CAS  Google Scholar 

  44. Rice BM, Sahu S, Owens FJ (2002) J Mol Struct Theochem 583:69–72

    Article  CAS  Google Scholar 

  45. Owens FJ, Jayasuriya K, Abrahmsen L, Politzer P (1985) Chem Phys Lett 116:434–438

    Article  CAS  Google Scholar 

  46. Murray JS, Lane P, Politzer P, Bolduc PR (1990) Chem Phys Lett 168:135–139

    Article  CAS  Google Scholar 

  47. Murray JS, Lane P, Politzer P (1995) Mol Phys 85:1–8

    Article  CAS  Google Scholar 

  48. Politzer P, Murray JS (1995) Mol Phys 86:251–255

    Article  CAS  Google Scholar 

  49. Politzer P, Murray JS (1996) J Mol Struct 376:419–424

    Article  CAS  Google Scholar 

  50. Murray JS, Lane P, Politzer P (1998) Mol Phys 93:187–194

    Article  CAS  Google Scholar 

  51. Lowe-Ma CK, Nissan RA, Wilson WS, Houk KN, Wang X (1988) J Chem Res 214:1740–1760

    Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (grant no. 11076017) for their support of this work. Yan Liu gratefully thanks Professor Bulat for providing the related program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuedong Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Wang, L., Wang, G. et al. Theoretical studies on 2-diazo-4,6-dinitrophenol derivatives aimed at finding superior propellants. J Mol Model 18, 1561–1572 (2012). https://doi.org/10.1007/s00894-011-1175-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1175-4

Keywords

Navigation