Skip to main content
Log in

Computer-aided de novo ligand design and docking/molecular dynamics study of Vitamin D receptor agonists

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

1α,25(OH)2D3, which is directly mediated by the vitamin D receptor (VDR), exerts a wide variety of biological actions. However, the treatment with 1α,25(OH)2D3 is limited because of its side effects. Many analogs and several nonsteroidal mimics with potent biological activity have been reported so far, and our rationale for designing the VDR agonists was on the basis of computer-aided drug design method by de novo design of A-ring and C/D-ring position of 1α,25(OH)2D3. Pyrimidine-2,4-diamine was selected as A-ring, and naphthalene and benzene were chosen as C/D-ring. By linking different components, a virtue compound library was obtained. To evaluate the contribution to activity of each component, we performed a series of automated molecular docking operations. Results revealed that the 19-dimethyl derivatives (the C-19 position correspond to C-20 in 1α,25(OH)2D3) show the favorable docking affinity to VDR. Moreover, the docking results are quite robust when further validated by molecular dynamics simulations. In addition, by free energy analysis using molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method, the driving force of the binding between VDR and the ligands is proved to be hydrophobic interactions. Thus, a possible strategy to design new series of VDR agonists is proposed. The strategy can be successfully applied to explain the high potential activities of the 19-dimethyl derivatives. It is anticipated that the findings reported here may provide useful information for designing effective VDR agonists as well as the therapeutic treatment of VDR-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bouillon R, Okamura WH, Norman AW (1995) Structure-function relationships in the vitamin D endocrine system. Endocr Rev 16:200–257

    CAS  Google Scholar 

  2. Norman AW, Frankel JB, Heldt AM, Grodsky GM (1980) Vitamin D deficiency inhibits pancreatic secretion of insulin. Science 209:823–825

    Article  CAS  Google Scholar 

  3. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumgerg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    Article  CAS  Google Scholar 

  4. Nakano Y, Kato Y, Imai K, Ochiai E, Namekawa J, Ishizuka S, Takenouchi K, Tanatani A, Hashimoto Y, Nagasawa K (2006) Practical synthesis and evaluation of the biological activities of 1alpha,25-dihydroxyvitamin D3 antagonists, 1alpha,25-dihydroxyvitamin D3-26,23-lactams. Designed on the basis of the helix 12-folding inhibition hypothesis. J Med Chem 49:2398–2406

    Article  CAS  Google Scholar 

  5. Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895

    Article  CAS  Google Scholar 

  6. Peleg S, Posner GH (2003) Vitamin D analogs as modulators of vitamin D receptor action. Curr Top Med Chem 3:1555–1572

    Article  CAS  Google Scholar 

  7. Aranda A, Pascual A (2001) Nuclear hormone receptors and gene expression. Physiol Rev 81:1269–1304

    CAS  Google Scholar 

  8. Brown AJ (2000) Mechanisms for the selective actions of vitamin D analogues. Curr Pharm Des 6:701–706

    Article  CAS  Google Scholar 

  9. Masuda S, Jones G (2003) Vitamin D analogs-drug design based on proteins involved in vitamin D signal transduction. Curr Drug Targets Immune Endocr Metab Disord 3:43–66

    Article  CAS  Google Scholar 

  10. Sicinski RR, Glebocka A, Plum LA, DeLuca HF (2007) Design, synthesis, and biological evaluation of a 1α,25-Dihydroxy-19-norvitamin D3 analogue with a frozen a-ring conformation. J Med Chem 50:6154–6164

    Article  CAS  Google Scholar 

  11. Bouillon R, Sarandeses LA, Allewaert K, Zhao J, Mascarenas JL, Mourino A, Vrielynck S, de Clercq P, Vandewalle M (1993) Biologic activity of dihydroxylated 19-nor-(pre)vitamin D3. J Bone Miner Res 8:1009–1015

    Article  CAS  Google Scholar 

  12. Okamura WH, Aurrecoechea JM, Gibbs RA, Norman AW (1989) Synthesis and biological activity of 9,11-Dehydrovitamin D3 analogues: stereoselective preparation of 6β-Vitamin D vinylallenes and a concise enynol synthesis for preparing the A-ring. J Org Chem 54:4072–4083

    Article  CAS  Google Scholar 

  13. Wang YZ, Li H, Bruns ME, Uskokovic M, Truitt GA, Horst R, Reinhardt T, Christakos S (1993) Effect of 1,25,28-trihydroxyvitamin D2 and 1,24,25-trihydroxyvitamin D3 on intestinal calbindin-D9K mRNA andprotein: Is there a correlation with intestinal calciumtransport? J Bone Miner Res 8:1483–1490

    Article  CAS  Google Scholar 

  14. Riveiros R, Rumbo A, Sarandeses LA, Mouriño A (2007) Synthesis and Conformational Analysis of 17α,21-Cyclo-22-Unsaturated Analogues of Calcitriol. J Org Chem 72:5477–5485

    Article  CAS  Google Scholar 

  15. Yamada S, Yamamoto K, Masuno H, Ohta M (1998) Conformation-function relationship of vitamin D: conformational analysis predicts potential side-chain structure. J Med Chem 41:1467–1475

    Article  CAS  Google Scholar 

  16. Westermann J, Schneider M, Platzek J, Petrov O (2007) Practical synthesis of a heterocyclic immunosuppressive vitamin D analogue. Org Process Res Dev 11:200–205

    Article  CAS  Google Scholar 

  17. Bury Y, Ruf D, Hansen CM, Kissmeyer AM, Binderup L, Carlberg C (2001) Molecular evaluation of vitamin D3 receptor agonists designed for topical treatment of skin diseases. J Invest Dermatol 116:785–792

    Article  CAS  Google Scholar 

  18. Inaba Y, Yoshimoto N, Sakamaki Y, Nakabayashi M, Ikura T, Tamamura H, Ito N, Shimizu M, Yamamoto K (2009) A new class of vitamin D analogues that induce structural rearrangement of the ligand-binding pocket of the receptor. J Med Chem 52:1438–1449

    Article  CAS  Google Scholar 

  19. Verstuyf A, Verlinden L, van Etten E, Shi L, Wu Y, D'Halleweyn C, van Haver D, Zhu GD, Chen YJ, Zhou X, Haussler MR, De Clercq P, Vandewalle M, van Baelen H, Mathieu C, Bouillon R (2000) Biological activity of CD-ring modified 1α,25-dihydroxyvitamin D analogues: C-ring and five-membered D-ring analogues. J Bone Miner Res 15:237–252

    Article  CAS  Google Scholar 

  20. Hosoda S, Tanatani A, Wakabayashi K, Makishima M, Imai K, Miyachi H, Nagasawad K, Hashimoto Y (2006) Ligands with a 3,3-diphenylpentane skeleton for nuclear vitamin D and androgen receptors: dual activities and metabolic activation. Bioorg Med Chem 14:5489–5502

    Article  CAS  Google Scholar 

  21. Miuraa D, Manabeb K, Gao QZ, Normanc AW, Ishizukab S (1999) 1α,25-Dihydroxyvitamin D3-26,23-lactone analogs antagonize differentiation of human leukemia cells (HL-60 cells) but not of human acute promyelocytic leukemia cells (NB4 cells). FEBS Lett 460:297–302

    Article  Google Scholar 

  22. Bury Y, Steinmeyer A, Carlberg C (2000) Structure activity relationship of carboxylic ester antagonists of the vitamin D(3) receptor. Mol Pharmacol 58:1067–1074

    CAS  Google Scholar 

  23. García-Sosa AT, Mancera RL (2006) The effect of a tightly bound water molecule on scaffold diversity in the computer-aided de novo ligand design of CDK2 inhibitors. J Mol Model 12:422–431

    Article  Google Scholar 

  24. Francis SM, Mittal A, Sharma M, Bharatam PV (2008) Design of Benzene-1,2-diamines as selective inducible nitric oxide synthase inhibitors: a combined de novo design and docking analysis. J Mol Model 14:215–224

    Article  CAS  Google Scholar 

  25. Böhm HJ (1994) On the use of LUDI to search the fine chemicals directory for ligands of proteins of known three-dimensional structure. J Comput Aid Mol Des 8:623–632

    Article  Google Scholar 

  26. Huang RB, Du QS, Wang CH, Chou KC (2008) An in-depth analysis of the biological functional studies based on the NMR M2 channel structure of influenza A virus. Biochem Biophys Res Commun 377:1243–1247

    Article  CAS  Google Scholar 

  27. Du QS, Huang RB, Wang CH, Li XM, Chou KC (2009) Energetic analysis of the two controversial drug binding sites of the M2 proton channel in influenza A virus. J Theor Biol 259:159–164

    Article  CAS  Google Scholar 

  28. Wang SQ, Du QS, Chou KC (2007) Study of drug resistance of chicken influenza a virus (H5N1) from homology-modeled 3D structures of neuraminidases. Biochem Biophys Res Commun 354:634–640

    Article  CAS  Google Scholar 

  29. Wang SQ, Du QS, Huang RB, Zhang DW, Chou KC (2009) Insights from investigating the interaction of oseltamivir (Tamiflu) with neuraminidase of the 2009 H1N1 swine flu virus. Biochem Biophys Res Commun 386:432–436

    Article  CAS  Google Scholar 

  30. Norman AW, Myrtle JF, Miogett RJ, Nowicki HG, Williams V, Popjaák G (1971) 1,25-Dihydroxycholecalciferol: identification of the proposed active form of vitamin D3 in the intestine. Science 173:51–54

    Article  CAS  Google Scholar 

  31. Verlinden L, Verstuyf A, Van Camp M, Marcelis S, Sabbe K, Zhao XY, De Clercq P, Vandewalle M, Bouillon R (2000) Two novel 14-epi-analogues of 1,25-dihydroxyvitamin D3 inhibit the growth of human breast cancer cells in vitro and in vivo. Cancer Res 60:2673–2679

    CAS  Google Scholar 

  32. Hansen CM, Hamberg KJ, Binderup E, Binderup L (2000) Seocalcitol (EB 1089) A vitamin D analogue of anti-cancer potential. Background, design, synthesis, pre-clinical and clinical evaluation. Curr Pharm Des 26:803–828

    Article  Google Scholar 

  33. Hisatake J, O'Kelly J, Uskokovic MR, Tomoyasu S, Koeffler HP (2001) Novel vitamin D3 analog, 21-(3-methyl-3-hydroxy-butyl)-19-nor D3, that modulates cell growth, differentiation, apoptosis, cell cycle, and induction of PTEN in leukemic cells. Blood 97:2427–2433

    Article  CAS  Google Scholar 

  34. Kissmeyer AM, Binderup L (1991) Calcipotriol (MC 903): pharmacokinetics in rats and biological activities of metabolites. A comparative study with 1,25(OH)2D3. Biochem Pharmacol 41:1601–1606

    Article  CAS  Google Scholar 

  35. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152

    Article  CAS  Google Scholar 

  36. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  37. Wang JM, Wolf RM, Caldwell JW, Kollamn PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  38. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  39. Darden T, York D, Pedersen L (1993) Particle mesh ewald: an N-log(N) method for ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  40. Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268:1144–1149

    Article  CAS  Google Scholar 

  41. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  CAS  Google Scholar 

  42. Massova I, Kollman PA (2000) Combined molecular mechanical and continuum solvent approach (MM PBSA/GBSA) to predict ligand binding. Perspect Drug Discov Des 18:113–135

    Article  CAS  Google Scholar 

  43. Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 55:383–394

    Article  CAS  Google Scholar 

  44. Zhou ZG, Madrid M, Evanseck JD, Madura JD (2005) Effect of a bound non-nucleoside RT inhibitor on the dynamics of wild-type and mutant HIV-1 reverse transcriptase. J Am Chem Soc 127:17253–17260

    Article  CAS  Google Scholar 

  45. Bissantz C, Folkers G, Rognan D (2000) Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem 43:4759–4767

    Article  CAS  Google Scholar 

  46. Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46:2287–2303

    Article  CAS  Google Scholar 

  47. Plummer MS, Holland DR, Shahripour A, Lunney EA, Fergus JH, Marks JS, McConnell P, Mueller WT, Sawyer TK (1997) Design, synthesis, and cocrystal structure of a nonpeptide Src SH2 domain ligand. J Med Chem 40:3719–3725

    Article  CAS  Google Scholar 

  48. Yamamoto K, Abe D, Yoshimoto N, Choi M, Yamagishi K, Tokiwa H, Shimizu M, Makishima M, Yamada S (2006) Vitamin D receptor: ligand recognition and allosteric network. J Med Chem 49:1313–1324

    Article  CAS  Google Scholar 

  49. Yamagishia K, Tokiwaa H, Makishimac M, Yamada S (2010) Interactions between 1α,25(OH)2D3 and residues in the ligand-binding pocket of the vitamin D receptor: a correlated fragment molecular orbital study. J Steroid Biochem 121:63–67

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support from Project of Undergraduate Educational Reform & Capacities in Tianjin University (No. 200904050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Wei or Qing-Zhi Gao.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 191 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, XL., Takimoto-Kamimura, M., Wei, J. et al. Computer-aided de novo ligand design and docking/molecular dynamics study of Vitamin D receptor agonists. J Mol Model 18, 203–212 (2012). https://doi.org/10.1007/s00894-011-1066-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1066-8

Keywords

Navigation