Skip to main content
Log in

The effect of a tightly bound water molecule on scaffold diversity in the computer-aided de novo ligand design of CDK2 inhibitors

  • Original paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have determined the effects that tightly bound water molecules have on the de novo design of cyclin-dependent kinase-2 (CDK2) ligands. In particular, we have analyzed the impact of a specific structural water molecule on the chemical diversity and binding mode of ligands generated through a de novo structure-based ligand generation method in the binding site of CDK2. The tightly bound water molecule modifies the size and shape of the binding site and we have found that it also imposed constraints on the observed binding modes of the generated ligands. This in turn had the indirect effect of reducing the chemical diversity of the underlying molecular scaffolds that were able to bind to the enzyme satisfactorily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Davis AM, Teague SJ, Kleywegt GJ (2003) Angew Chem Int Ed 42:2718-2736

    Article  CAS  Google Scholar 

  2. Poornima CS, Dean PM (1995) J Comput-Aided Mol Des 9:500–512

    Article  PubMed  CAS  Google Scholar 

  3. Hendlich M, Bergner A, Günter J, Klebe G (2003) J Mol Biol 326:607–620

    Article  PubMed  CAS  Google Scholar 

  4. Chung E, Henriques D, Renzoni D, Zvelebil M, Bradshaw JM, Waksman G, Robinson CV, Ladbury JE (1998) Struct Fold Des 6:1141–1151

    Article  CAS  Google Scholar 

  5. Rejto PA, Verkhivker GM (1997) Proteins Struct Funct Genet 28:313–324

    Article  PubMed  CAS  Google Scholar 

  6. Wester MR, Johnson EF, Marques-Soares C, Dijols S, Dansette PM, Mansuy D, Stout CD (2003) Biochem 42:9335–9345

    Article  CAS  Google Scholar 

  7. Marrone TJ, Briggs JM, McCammon JA (1997) Ann Rev Pharmacol Toxicol 37:71–90

    Article  CAS  Google Scholar 

  8. Lam PYS, Jadhav PK, Eyermann CJ, Hodge CN, Ru Y, Bacheler LT, Meek JL, Otto MJ, Rayner MM, Wong YN, Chang CH, Weber PC, Jackson DA, Sharpe TR, Ericksonviitanen S (1994) Science 263:380–384

    Article  PubMed  CAS  Google Scholar 

  9. Chen JM, Xu SL, Wawrzak Z, Basarab GS, Jordan DB (1998) Biochem 37:17735–17744

    Article  CAS  Google Scholar 

  10. Mikol V, Papageorgiou C, Borer X (1995) J Med Chem 38:3361–3367

    Article  PubMed  CAS  Google Scholar 

  11. Cherbavaz DB, Lee ME, Stroud RM, Koschl DE (2000) J Mol Biol 295:377–385

    Article  PubMed  CAS  Google Scholar 

  12. Finley JB, Atigadda VR, Duarte F, Zhao JJ, Brouillette WJ, Air GM, Luo M (1999) J Mol Biol 293:1107–1119

    Article  PubMed  CAS  Google Scholar 

  13. Rarey M, Kramer B, Lengauer T (1998) Proteins Struct Funct Genet 34:17–28

    Article  Google Scholar 

  14. Schnecke V, Kuhn LA (2000) Perspect Drug Discov Des 20:171–190

    Article  CAS  Google Scholar 

  15. Pospisil P, Kuoni T, Scapozza L, Folkers G (2002) J Recept Signal Transduct Res 22:141–154

    Article  PubMed  CAS  Google Scholar 

  16. Pastor M, Cruciani G, Watson KA (1997) J Med Chem 40:4089–4102

    Article  PubMed  CAS  Google Scholar 

  17. Lloyd DG, García-Sosa AT, Alberts IL, Todorov NP, Mancera RL (2004) J Comput-Aided Mol Des 18:89–100

    Article  PubMed  CAS  Google Scholar 

  18. Mancera RL (2002) J Comput-Aided Mol Des 16:479–499

    Article  PubMed  CAS  Google Scholar 

  19. Todorov NP, Dean PM (1998) J Comput-Aided Mol Des 12:335–349

    Article  PubMed  CAS  Google Scholar 

  20. Stahl M, Todorov NP, James T, Mauser H, Boehm H-J, Dean PM (2002) J Comput-Aided Mol Des 16:459–478

    Article  PubMed  CAS  Google Scholar 

  21. Gray NS, Wodicka L, Thunissen A-MWH, Norman TC, Kwon S, Espinoza FH, Morgan DO, Barnes G, LeClerc S, Meijer L, Kim S-H, Lockhart DJ, Schultz PG (1998) Science 281:533–538

    Article  PubMed  MathSciNet  CAS  Google Scholar 

  22. Knockaert M, Greengard P, Meijer L (2002) Trends Phamacol Sci 23:417–425

    Article  CAS  Google Scholar 

  23. Metz WA (2003) Bioorg Med Chem Lett 13:2953–2953

    Article  CAS  Google Scholar 

  24. Beattie JF, Breault GA, Ellston RPA, Green S, Jewsbury PJ, Midgley CJ, Naven RT, Minshull CA, Pauptit RA, Tucker JA, Pease JE (2003) Bioorg Med Chem Lett 13:2955–2960

    Article  PubMed  CAS  Google Scholar 

  25. Breault GA, Ellston RPA, Green S, James SR, Jewsbury PJ, Midgley CJ, Pauptit RA, Minshull CA, Tucker JA, Pease JA (2003) Bioorg Med Chem Lett 13:2961–2966

    Article  PubMed  CAS  Google Scholar 

  26. Anderson M, Beattie JF, Breault GA, Breed J, Blyth KF, Culshaw JD, Ellston RPA, Green S, Minshull CA, Norman RA, Pauptit RA, Stanway J, Thomas AP, Jewsbury PJ (2003) Bioorg Med Chem Lett 13:3021–3026

    Article  PubMed  CAS  Google Scholar 

  27. Westwell AD (2003) Drug Discov Today 8:1094–1095

    Article  Google Scholar 

  28. McGovern SL, Shoichet BK (2003) J Med Chem 46:1478–1483

    Article  PubMed  CAS  Google Scholar 

  29. Sayle KL, Bentley J, Boyle FT, Calvert AH, Cheng YZ, Curtin NJ, Endicott JA, Golding BT, Hardcastle IR, Jewsbury PJ, Mesguiche V, Newell DR, Noble MEM, Parsons RJ, Pratt DJ, Wang LZ, Griffin RJ (2003) Bioorg Med Chem Lett 13:3079–3082

    Article  PubMed  CAS  Google Scholar 

  30. Moravec J, Krystof V, Hanus J, Havlicek L, Moravcova D, Fuksova K, Kuzma M, Lenobel R, Otyepka M, Strnad M (2003) Bioorg Med Chem Lett 13:2993–2996

    Article  PubMed  CAS  Google Scholar 

  31. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucl Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  32. Shewchuk L, Hassell A, Wisely B, Rocque W, Holmes W, Veal J, Kuyper LF (2000) J Med Chem 43:133–138

    Article  PubMed  CAS  Google Scholar 

  33. Pierce AC, Sandretto KL, Bemis GW (2002) Proteins Struct Funct Genet 49:567–576

    Article  PubMed  CAS  Google Scholar 

  34. Todorov NP, Dean PM (1997) J Comput-Aided Mol Des 11:175–192

    Article  PubMed  CAS  Google Scholar 

  35. Dinur U, Hagler AT (1991) In: Lipkowitz KB, Boyd DB (eds) Reviews in Computational Chemistry, vol 2. VCH Publishers Inc, USA

  36. García-Sosa AT, Mancera RL, Dean PM (2003) J Mol Model 9:172–182

    Article  CAS  Google Scholar 

  37. Kríz Z, Otyepka M, Bártová I, Koca J (2004) Proteins Struct Funct Bioinf 55:258–274

    Article  CAS  Google Scholar 

  38. Krystof V, Strnad M (2001) Chem Listy 95:295–300

    CAS  Google Scholar 

  39. Davies TG, Pratt DJ, Endicott JA, Johnson LN, Noble MEM (2002) Pharmacol Therap 93:125–133

    Article  CAS  Google Scholar 

  40. Hardcastle IR, Golding BT, Griffin RJ (2002) Annu Rev Pharmacol Toxicol 42:325–348

    Article  PubMed  CAS  Google Scholar 

  41. Gibson AE, Arris CE, Bentley J, Boyle T, Curtin NJ, Davies TG, Endicott JA, Golding BT, Grant S, Griffin RJ, Jewsbury P, Johnson LN, Mesguiche V, Newell DR, Noble MEM, Tucker JA, Whitfield HJ (2002) J Med Chem 45:3381–3393

    Article  PubMed  CAS  Google Scholar 

  42. Schulze-Gahmen U, De Bondt HL, Kim S-H (1996) J Med Chem 39:4540–4546

    Article  PubMed  CAS  Google Scholar 

  43. Misra RN, Xiao H, Kim KS, Han W-C, Barbosa SA, Hunt JT, Rawlins DB, Shan W, Ahmed SZ, Qian L, Chen B-C, Zhao R, Bednarz MS, Kellar KA, Mulheron JG, Batorsky R, Roongta U, Kamath A, Marathe P, Ranadive SA, Sack JS, Tokarski JS, Pavletich NP, Lee FYF, Webster KR, Kimball SD (2004) J Med Chem 47:1719–1728

    Article  PubMed  CAS  Google Scholar 

  44. de Azevedo WF, Mueller-Dieckman H-J, Schulze-Gahmen U, Worland PJ, Sausville EA, Kim SH (1996) Proc Natl Acad Sci USA 93:2735–2740

    Article  PubMed  Google Scholar 

  45. Schulze-Gahmen U, Brandsen J, Jones HD, Morgan D, Meijer L, Vesely J, Kim S-H Proteins Struct Funct Genet 22:378–391

Download references

Acknowledgements

ATGS is grateful to Consejo Nacional de Ciencia y Tecnología (CoNaCyT, México) for the award of a post-graduate scholarship and to the Universities UK for an Overseas Research Scheme award. The authors would like to thank Dr. Nikolay P. Todorov, Dr. Stuart Firth-Clark and Dr. Christoph Buenemann for helpful and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alfonso T. García-Sosa or Ricardo L. Mancera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Sosa, A.T., Mancera, R.L. The effect of a tightly bound water molecule on scaffold diversity in the computer-aided de novo ligand design of CDK2 inhibitors. J Mol Model 12, 422–431 (2006). https://doi.org/10.1007/s00894-005-0063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0063-1

Keywords

Navigation