Skip to main content
Log in

Multiple templates-based homology modeling enhances structure quality of AT1 receptor: validation by molecular dynamics and antagonist docking

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We present a comparative account on 3D-structures of human type-1 receptor (AT1) for angiotensin II (AngII), modeled using three different methodologies. AngII activates a wide spectrum of signaling responses via the AT1 receptor that mediates physiological control of blood pressure and diverse pathological actions in cardiovascular, renal, and other cell types. Availability of 3D-model of AT1 receptor would significantly enhance the development of new drugs for cardiovascular diseases. However, templates of AT1 receptor with low sequence similarity increase the complexity in straightforward homology modeling, and hence there is a need to evaluate different modeling methodologies in order to use the models for sensitive applications such as rational drug design. Three models were generated for AT1 receptor by, (1) homology modeling with bovine rhodopsin as template, (2) homology modeling with multiple templates and (3) threading using I-TASSER web server. Molecular dynamics (MD) simulation (15 ns) of models in explicit membrane-water system, Ramachandran plot analysis and molecular docking with antagonists led to the conclusion that multiple template-based homology modeling outweighs other methodologies for AT1 modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. MatsusakaT II (1997) Biological functions of angiotensin and its receptors. Annu Rev Physiol 59:395–412

    Article  Google Scholar 

  2. De Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472

    Google Scholar 

  3. Meng EC, Bourne HR (2001) Receptor activation: what does therhodopsin structure tell us? Trends Pharmacol Sci 22:587–593

    Article  CAS  Google Scholar 

  4. Gether U (2000) Uncovering molecular mechanisms involved inactivation of G protein coupled receptors. Endocr Rev 21:90–113

    Article  CAS  Google Scholar 

  5. Petrey D, Honig B (2005) Protein structure prediction: inroads to biology. Mol Cell 20:811–819

    Article  CAS  Google Scholar 

  6. Rayan A (2009) New vistas in GPCR 3D structure prediction. J Mol Model 16:183–191

    Article  Google Scholar 

  7. Li M, Fang H, Du L, Xia L, Wang B (2008) Computational studies of the binding site of α1A-adrenoceptor antagonists. J Mol Model 14:957–966

    Article  CAS  Google Scholar 

  8. Sasaki K, Yamano Y, Bardhan S, Iwai N, Murray JJ, Hasegawa M, Matsuda Y, Inagami T (1991) Cloning andexpression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature 351:230–233

    Article  CAS  Google Scholar 

  9. Mukoyama M, Nakajima M, Horiuchi M, Sasamura H, Pratt RE, Dzau VJ (1993) Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven transmembrane receptors. J Biol Chem 268:24539–24542

    CAS  Google Scholar 

  10. Yamato Y, Ohyama K, Kikyo M, Sano T, Nakagomi Y, Inoue Y (1995) Mutagenesis and molecular modeling of rat angiotensin II receptor. J Biol Chem 270:14024–14030

    Article  Google Scholar 

  11. Nikiforovich GV, Marshall GR (2001) 3D model for TM region of the AT-1 receptor in complex with angiotensin-II independently validated by site-directed mutagenesis data. Biochem Biophys Res Comm 286:1204–1211

    Article  CAS  Google Scholar 

  12. Deraet M, Rihakova L, Boucard A, Perodin J, Sauve S, Mathieu AP, Guillemette G, Leduc R, Lavigne P, Escher E (2002) Angiotensin II is bound to both receptors AT1 and AT2, parallel to the transmembrane domains and in an extended form. Can J Physiol Pharmacol 80:418–425

    Article  CAS  Google Scholar 

  13. Tuccinardi T, Calderone V, Rapposelli S, Martinelli A (2006) Proposal of a new binding orientation for non-peptide AT1 antagonists: Homology modeling, docking and three-dimensional quantitative structure−activity relationship analysis. J Med Chem 49:4305–4316

    Article  CAS  Google Scholar 

  14. Baleanu GC, Karnick S (2006) Model of the whole rat AT1 receptor and the ligand-binding site. J Mol Model 12:325–337

    Article  Google Scholar 

  15. Fan H, Mark AE (2004) Refinement of homology-based protein structures by molecular dynamics simulation techniques. Protein Sci 13:211–220

    Article  CAS  Google Scholar 

  16. Mobarec JC, Sanchez R, Filizola M (2009) Modern homology modeling of G-protein coupled receptors: which structural template to use? J Med Chem 52:5207–5216

    Article  CAS  Google Scholar 

  17. Fernandez-Fuentes N, Rai BK, Madrid-Aliste CJ, Fajardo JE, Fiser A (2007) Comparative protein structure modeling by combining multiple templates and optimizing sequence-to-structure alignments. Bioinformatics 23:2558–2565

    Article  CAS  Google Scholar 

  18. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40

    Article  Google Scholar 

  19. Pruitt KD, Tatusova T, Maglott DR (2005) NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33(Database Issue):D501–D504

    Article  CAS  Google Scholar 

  20. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucl Acids Res 28:235–242

    Article  CAS  Google Scholar 

  21. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  22. Fiser A, Sali A (2003) Modeller: generation and refinement of homology-based protein sequence models. Methods Enzymol 374:461–491

    Article  CAS  Google Scholar 

  23. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WR III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  24. Madhusudhan MS, Webb BM, Marti-Renom MA, Eswar N, Sali A (2009) Alignment of multiple protein structures based on sequence and structure features. Prot Eng Des Sel 22(9):569-574

    Google Scholar 

  25. Yamano Y, Ohyama K, Chaki S, Guo DF, Inagami T (1992) Identification of amino acid residues of rat angiotensin II receptor for ligand binding by site directed mutagenesis. Biochem Biophys Res Commun 187:1426–1431

    Article  CAS  Google Scholar 

  26. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods R (2005) The amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  27. Zhang Y, Skolnick J (2004) Scoring function for automated assessment of protein structure template quality. Proteins 57:702–710

    Article  CAS  Google Scholar 

  28. Levitt M, Gerstein M (1998) A unified statistical framework for sequence comparison and structure comparison. Proc Natl Acad Sci USA 95:5913–5920

    Article  CAS  Google Scholar 

  29. Laskowski RA, MacArthur MW, Moss DS, Thorton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  30. Humphrey W, Dalke A, Schulten K (1996) VMD-visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  31. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  32. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  33. vanGunsteren WF, Berendsen HJC (1977) Algorithms for macromolecular dynamics and constraint dynamics. Mol Phys 34:1311–1327

    Article  CAS  Google Scholar 

  34. Benz RW, Castro-Román F, Tobias DJ, White SH (2005) Experimental validation of molecular dynamics simulations of lipid bilayers: a new approach. Biophys J 88:805–817

    Article  CAS  Google Scholar 

  35. Glykos NM (2006) CARMA: a molecular dynamics analysis program. J Comput Chem 27:1765–1768

    Article  CAS  Google Scholar 

  36. Andersen CAF, Palme RAG, Brunak S, Rost B (2002) Continuum secondary structure captures protein flexibility. Structure 10:175–185

    Article  CAS  Google Scholar 

  37. Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035

    Article  CAS  Google Scholar 

  38. Stewart JJP (1989) Optimization of parameters for semiempirical methods. J Comput Chem 10:209–220

    Article  CAS  Google Scholar 

  39. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  40. Sanner MF (1999) Python: a programming language for software integration and development. J Mol Graph Model 17:57–61

    CAS  Google Scholar 

  41. Sticke DF, Presta LG, Dill KA, Rose GD (1992) Hydrogen bonding in globular proteins. J Mol Biol 226:1143–1159

    Article  Google Scholar 

  42. Mire DE, Silfani TN, Pugsley MK (2005) A review of the structural and functional features of olmesartan medoxomil, an angiotensin receptor blocker. J Cardiovasc Pharmacol™ 46:585–593

    Article  CAS  Google Scholar 

  43. Thomas WG, Thekkumkara TJ, Motel TJ, Baker KM (1995) Stable expression of a truncated AT1A receptor in CHO-K1 cells. J Biol Chem 270:207-213

    Google Scholar 

Download references

Acknowledgments

We thank University Grants Commission (UGC), New Delhi, for the award of Senior Research Fellowship to S. Pandian. Thanks are due to UGC-NRCBS, MKU, for providing the Lab facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murugesan Ramachandran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokkar, P., Mohandass, S. & Ramachandran, M. Multiple templates-based homology modeling enhances structure quality of AT1 receptor: validation by molecular dynamics and antagonist docking. J Mol Model 17, 1565–1577 (2011). https://doi.org/10.1007/s00894-010-0860-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0860-z

Keywords

Navigation