Skip to main content
Log in

Identification of ligand binding site on RXRγ using molecular docking and dynamics methods

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Retinoid X receptors (RXRα, β and γ) are recently known to be cancer chemotherapies targets. The ligand binding domains of RXRs have been crystallized, but the information of RXRγ ligand binding site is not yet available due to the lack of liganded complex. A thorough understanding of the ligand binding sites is essential to study RXRs and may result in cancer therapeutic breakthrough. Thus we aimed to study the RXRγ ligand binding site and find out the differences between the three subtypes. Alignment and molecular simulation were carried out for identifying the RXRγ ligand binding site, characterizing the RXRγ ligand binding mode and comparing the three RXRs. The result has indicated that the RXRγ ligand binding site is defined by helices H5, H10, β-sheet s1 and the end loop. Besides hydrophobic interactions, the ligand 9-cis retinoic acid interacts with RXRγ through a hydrogen bond with Ala106, a salt bridge with Arg95 and the π-π interactions with Phe217 and Phe218. The binding modes exhibit some similarities among RXRs, such as the interactions with Arg95 and Ala106. Nonetheless, owing to the absence of Ile47, Cys48, Ala50, Ala51 and residues 225∼237 in the active site, the binding pocket in RXRγ is two times larger than those of RXRα and RXRβ. Meanwhile, spatial effects of Trp84, Arg95, Ala106, Phe217 and Phe218 help to create a differently shaped binding pocket as compared to those of RXRα and RXRβ. Consequently, the ligand in RXRγ undergoes a “standing” posing which is distinct from the other two RXRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Budhu AS, Noy N (2000) On the role of the carboxyl-terminal helix of RXR in the interactions of the receptor with ligand. Biochemistry 39:4090–4095. doi:10.1021/bi992827f

    Article  CAS  Google Scholar 

  2. Lee WY, Noy N (2002) Interactions of RXR with coactivators are differentially mediated by helix 11 of the receptor’s ligand binding domain. Biochemistry 41:2500–2508. doi:10.1021/bi011764+

    Article  CAS  Google Scholar 

  3. Takamatsu K, Takano A, Yakushiji N, Morishita K, Matsuura N, Makishima M, Tai A, Sasaki K, Kakuta H (2008) The first potent subtype-selective retinoid X receptor (RXR) agonist possessing a 3-isopropoxy-4- isopropylphenylamino moiety, NEt-3IP (RXRα/β-dual agonist). Chem Med Chem 3:780–787. doi:10.1002/cmdc.200700313

    CAS  Google Scholar 

  4. Hopkins PM, Durica D, Washington T (2008) RXR isoforms and endogenous retinoids in the fiddler crab, Uca pugilator. Comp Biochem Physiol A Mol Integr Physiol 151:602–614. doi:10.1016/j.cbpa.2008.07.021

    Article  Google Scholar 

  5. Tallafuss A, Hale LA, Yan YL, Dudley L, Eisen JS, Postlethwait JH (2006) Characterization of retinoid-X receptor genes rxra, rxrba, rxrbb and rxrg during zebrafish development. Gene Expr Patterns 6:556–565. doi:10.1016/j.modgep.2005.10.005

    Article  CAS  Google Scholar 

  6. Schuetz A, Min JR, Loppnau P, Weigelt J, Sundstrom M, Edwards AM, Arrowsmith CH, Bochkarev A, Plotnikov AN (2006) The crystal structure of human retinoic acid receptor RXR-gamma ligand-binding domain. Toronto, Canada. doi:10.2210/pdb2gl8/pdb

    Google Scholar 

  7. Egea PF, Mitschler A, Rochel N, Ruff M, Chambon P, Moras D (2000) Crystal structure of the human RXRα ligand binding domain bound to its natural ligand: 9cRA. The EMBO Journal 19:2592–2601. doi:10.1093/emboj/19.11.2592

    Article  CAS  Google Scholar 

  8. Love JD, Gooch JT, Benko S, Li C, Nagy L, Chatterjee VK, Evans RM, Schwabe JW (2002) The structural basis for the specificity of retinoid-X receptor-selective agonists: New insights into the role of Helix 12. J Biol Chem 277:11385–11391. doi:10.1074/jbc.M110869200

    Article  CAS  Google Scholar 

  9. Miao J, Chapman HN, Kirz J, Sayre D, Hodgson KO (2004) Taking X-ray diffraction to the limit: macromolecular structures from femtosecond X-ray pulses and diffraction microscopy of cells with synchrotron radiation. Annu Rev Biophys Biomol Struct 33:157–176. doi:10.1146/annurev.biophys.33.110502.140405

    Article  CAS  Google Scholar 

  10. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. doi:10.1093/nar/28.1.235

    Article  CAS  Google Scholar 

  11. Guex N, Peitsch MC (1997) Swiss-model and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723. doi:10.1002/elps.1150181505

    Article  CAS  Google Scholar 

  12. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662. doi:10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B

    Article  CAS  Google Scholar 

  13. Hetényi C, van der Spoel D (2002) Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Sci 11:1729–1737. doi:10.1110/ps.0202302

    Article  Google Scholar 

  14. Huey R, Morris GM, Olson AJ, Goodsell DS (2006) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152. doi:10.1002/jcc.20634

    Article  Google Scholar 

  15. Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The amber biomolecular simulation programs. J Comput Chem 26:1668–1688. doi:10.1002/jcc.20290

    Article  CAS  Google Scholar 

  16. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65:712–725. doi:10.1002/prot.21123

    Article  CAS  Google Scholar 

  17. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general AMBER force field. J Comput Chem 25:1157–1174. doi:10.1002/jcc.20035

    Article  CAS  Google Scholar 

  18. Wang J, Wang W, Kollman PA, Case DA (2001) Antechamber: an accessory software package for molecular mechanical calculations. Abstr Pap Am Chem Soc 222:U403

    Google Scholar 

  19. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. doi:10.1063/1.445869

    Article  CAS  Google Scholar 

  20. Darden T, York D, Pedersen L (1993) Particle mesh ewald: an N-log(N) method for ewald sums in large systems. J Chem Phys 98:10089–10092. doi:10.1063/1.464397

    Article  CAS  Google Scholar 

  21. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. doi:10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  22. Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268:1144–1149. doi:10.1126/science.7761829

    Article  CAS  Google Scholar 

  23. Chambon P (1994) The retinoid signaling pathway: molecular and genetic analysis. Semin Cell Biol 5:115–125. doi:10.1006/scel.1994.1015

    Article  CAS  Google Scholar 

  24. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series programs. Nucleic Acids Res 31:3497–3500. doi:10.1093/nar/gkg500

    Article  CAS  Google Scholar 

  25. Humphrey W, Dalke A, Schulten K (1996) VMD - Visual Molecular Dynamics. J Mol Graph 14:33–38. doi:10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  26. Du QS, Huang RB, Wang CH, Li XM, Chou KC (2009) Energetic analysis of the two controversial drug binding sites of the M2 proton channel in influenza A virus. J Theor Biol 259:159–164. doi:10.1016/j.jtbi.2009.03.003

    Article  CAS  Google Scholar 

  27. Chou KC, Jones D, Heinrikson RL (1997) Prediction of the tertiary structure and substrate binding site of caspase-8. FEBS Lett 419:49–54. doi:10.1016/S0014-5793(97)01246-5

    Article  CAS  Google Scholar 

  28. Chou KC, Wei DQ, Zhong WZ (2003) Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochem Biophys Res Commun 308:148–151. doi:10.1016/S0006-291X(03)01342-1

    Article  CAS  Google Scholar 

  29. Wang SQ, Du QS, Huang RB, Zhang DW, Chou KC (2009) Insights from investigating the interaction of oseltamivir (Tamiflu) with neuraminidase of the 2009 H1N1 swine flu virus. Biochem Biophys Res Comm 386:432–436. doi:10.1016/j.bbrc.2009.06.016

    Article  CAS  Google Scholar 

  30. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  31. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated resiudes. Nucleic Acids Res 34:W116–W118. doi:10.1093/nar/gkl282

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support from Project of Undergraduate Educational Reform & Capacities in Tianjin University (No. 200904050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, P., Liao, Qh., Ren, CF. et al. Identification of ligand binding site on RXRγ using molecular docking and dynamics methods. J Mol Model 17, 1259–1265 (2011). https://doi.org/10.1007/s00894-010-0822-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0822-5

Keywords

Navigation