Skip to main content
Log in

Theoretical studies on identity SN2 reactions of lithium halide and methyl halide: A microhydration model

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Reactions of lithium halide (LiX, X = F, Cl, Br and I) and methyl halide (CH3X, X = F, Cl, Br and I) have been investigated at the B3LYP/6-31G(d) level of theory using the microhydration model. Beginning with hydrated lithium ion, four or two water molecules have been conveniently introduced to these aqueous-phase halogen-exchange SN2 reactions. These water molecules coordinated with the center metal lithium ion, and also interacted with entering and leaving halogen anion via hydrogen bond in complexes and transition state, which to some extent compensated hydration of halogen anion. At 298 K the reaction profiles all involve central barriers ΔE cent which are found to decrease in the order F > Cl > Br > I. The same trend is also found for the overall barriers (ΔE ovr ) of the title reaction. In the SN2 reaction of sodium iodide and methyl iodide, the activation energy agrees well with the aqueous conductometric investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. For experimental investigation on aqueous-phase SN2 reactions, see a review: Parker AJ (1969) Chem Rev 69:1–32 and its cited references

    Google Scholar 

  2. Dewar MJS, Dougherty RC (1975) The PMO theory of organic chemistry. Plenum, New York, p 234

    Google Scholar 

  3. Arnett EM, Johnston DE, Small LE (1975) J Am Chem Soc 97:5598–5600

    Article  CAS  Google Scholar 

  4. Olmstead WN, Brauman JI (1977) J Am Chem Soc 99:4219–4228

    Article  CAS  Google Scholar 

  5. DePuy CH, Gronert S, Mullin A, Bierbaum VM (1990) J Am Chem Soc 112:8650–8655

    Article  CAS  Google Scholar 

  6. Pellerite MJ, Brauman JI (1983) J Am Chem Soc 105:2672–2680

    Article  CAS  Google Scholar 

  7. Caldwell G, Magnera TF, Kebarle P (1984) J Am Chem Soc 106:959–966

    Article  CAS  Google Scholar 

  8. Shi Z, Boyd RJ (1990) J Am Chem Soc 112:6789–6796

    Article  CAS  Google Scholar 

  9. Glukhovtsev MN, Pross A, Radom L (1995) J Am Chem Soc 117:2024–2032

    Article  CAS  Google Scholar 

  10. Glukhovtsev MN, Bach RD, Pross A, Radom L (1996) Chem Phys Lett 260:558–564

    Article  CAS  Google Scholar 

  11. Glukhovtsev MN, Pross A, Schlegel HB, Bach RD, Radom L (1996) J Am Chem Soc 118:11258–11264

    Article  CAS  Google Scholar 

  12. Glad SS, Jensen F (1997) J Am Chem Soc 199:227–232

    Article  Google Scholar 

  13. Cossi M, Adamo C, Barone V (1998) Chem Phys Lett 297:1–7

    Article  CAS  Google Scholar 

  14. Safi B, Choho K, Geerlings P (2001) J Phys Chem A 105:591–601

    Article  CAS  Google Scholar 

  15. Kato S, Davico GE, Lee HS, DePuy CH (2001) Int J Mass Spectrom 210–211:223–229

    Google Scholar 

  16. Harder S, Streitwieser A, Petty JT, Schleyer PvR (1995) J Am Chem Soc 117:3253–3259

    Article  CAS  Google Scholar 

  17. Streitwieser A, Choy GSC, Abu-Hasanayn F (1997) J Am Chem Soc 119:5013–5019

    Article  CAS  Google Scholar 

  18. Xiong Y, Zhu HJ, Ren Y (2003) J Mol Struct THEOCHEM 664–665:279–289

    Article  CAS  Google Scholar 

  19. Ren Y, Chu SY (2004) J Comput Chem 25:461–467

    Article  CAS  Google Scholar 

  20. Hasanayn F, Streitwieser A, Al-Rifai R (2005) J Am Chem Soc 127:2249–2255

    Article  CAS  Google Scholar 

  21. Ingold CK (1969) Structure and mechanism in organic chemistry. Cornell University Press, Ithaca, p 457

    Google Scholar 

  22. Westaway KC (1978) Can J Chem 56:2691–2699

    Article  CAS  Google Scholar 

  23. Westaway KC, Lai ZG (1989) Can J Chem 67:345–349

    Article  CAS  Google Scholar 

  24. Streitwieser A, Jayasree EG (2007) J Org Chem 72:1785–1798

    Article  CAS  Google Scholar 

  25. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  26. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  27. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  28. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  29. Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  30. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  31. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  32. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  33. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB et al (2004) Gaussian 03, Revision E.01. Gaussian, Wallingford

    Google Scholar 

  35. Michaellian KH, Moskovits M (1978) Nature 273:135–136

    Article  Google Scholar 

  36. Egawa T, Yamamoto S, Nakata M, Kuchitsu K (1987) J Mol Struct 156:213–228

    Article  CAS  Google Scholar 

  37. Jensen T, Brodersen S, Guelachvili G (1981) J Mol Spectrosc 88:378–393

    Article  CAS  Google Scholar 

  38. Graner G (1981) J Mol Spectrosc 90:394–438

    Article  CAS  Google Scholar 

  39. Harmony MD, Laurie VW, Kuczkowski RL, Ramsay DA, Lovas FJ, Lafferty WJ, Maki AG (1979) J Phys Chem Ref Data 8:619–711

    Article  CAS  Google Scholar 

  40. For the data, see: Allen LC (1989) J Am Chem Soc 111:9003–9014

    Google Scholar 

  41. Lias SG, Bartmess JE, Liebman JF, Holmes JL, Levin RD, Mallard WG (1988) J Phys Chem Ref Data 17 Suppl. 1

  42. Han CC, Dodd JA, Brauman JI (1986) J Phys Chem 90:471–477

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Scientific Research Funding of Chongqing University, Innovative Talent Training Project of Chongqing University, the Third Stage of “211 project” (No. S-09103), Chongqing Municipal Education Commission (No. KJ-091201) and Bureau of Education of Sichuan Province (No. 2006ZD051) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, S., Xiong, Y. & Wang, J. Theoretical studies on identity SN2 reactions of lithium halide and methyl halide: A microhydration model. J Mol Model 16, 1931–1937 (2010). https://doi.org/10.1007/s00894-010-0688-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0688-6

Keywords

Navigation