Skip to main content
Log in

DFT and electrochemical studies on nortriptyline oxidation sites

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A study on the possible sites of oxidation and epoxidation of nortriptyline was performed using electrochemical and quantum chemical methods; these sites are involved in the biological responses (for example, hepatotoxicity) of nortriptyline and other similar antidepressants. Quantum chemical studies and electrochemical experiments demonstrated that the oxidation and epoxidation sites are located on the apolar region of nortriptyline, which will useful for understanding the molecule’s activity. Also, for the determination of the compound in biological fluids or in pharmaceutical formulations, we propose a useful analytical methodology using a graphite-polyurethane composite electrode, which exhibited the best performance when compared with boron-doped diamond or glassy carbon surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sugrue MF, Enn SJ (1981) Antidepressants. Neurochemical, behavioral and clinical perspectives. Raven, New York

    Google Scholar 

  2. Baker GB, Bourin M (1996) Biomed Pharmacother 50:7–12

    Article  Google Scholar 

  3. http://www.medicinenet.com/nortriptyline/article.htm. Accessed in May/2004

  4. Pereira CA, Santos SA, Kubota LT (2002) Quim Nova 25:1012–1021

    CAS  Google Scholar 

  5. Wen B, Ma L, Zhu M (2008) Chem Biol Interact 173:59–67

    Article  CAS  Google Scholar 

  6. Bishop E, Hussein W (1984) Analyst 109:73–80

    Article  CAS  Google Scholar 

  7. Julião MSS, Ferreira EI, Ferreira NG, Serrano SHP (2006) Electrochim Acta 51:5080–5086

    Article  Google Scholar 

  8. Suffredini HB, Pedrosa VA, Codognoto L, Machado SAS, Rocha-Filho RC, Avaca LA (2004) Electrochim Acta 49:4021–4026

    Article  CAS  Google Scholar 

  9. Suffredini HB, Santos MC, de Souza D, Codognoto L, Homem-de-Mello P, Honorio KM, Da Silva ABF, Machado SAS, Avaca LA (2005) Anal Lett 38:1587–1599

    Article  CAS  Google Scholar 

  10. Toledo RA, Santos MC, Cavalheiro ETG, Mazo LH (2005) Anal Bioanal Chem 381:1161–1166

    Article  Google Scholar 

  11. Smiechowski MF, Lvovich VF (2005) J Electroanal Chem 577:67–78

    Article  CAS  Google Scholar 

  12. Sine G, Duo I, El Rouston B, Foti G, Comninellis C (2006) J Appl Electrochem 36:847–862

    Article  CAS  Google Scholar 

  13. Karelson M, Lobanov VS, Katritzky AR (1996) Chem Rev 96:1027–1043

    Article  CAS  Google Scholar 

  14. Mendes RK, Cervini P, Cavalheiro ETG (2006) Talanta 68:708–712

    Article  CAS  Google Scholar 

  15. Hohenberg P, Kohn W (1964) Gas Rev 136:B864–B871

    Google Scholar 

  16. Kohn W, Sham LJ (1965) Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  17. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  18. Lee C, Yang W, Parr RG (1988) Phys Rev B37:785–789

    Google Scholar 

  19. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  20. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  21. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724

    Article  CAS  Google Scholar 

  22. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  23. Hariharan PC, Pople JA (1974) Mol Phys 27:209–214

    Article  CAS  Google Scholar 

  24. Gordon MS (1980) Chem Phys Lett 76:163–168

    Article  CAS  Google Scholar 

  25. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  26. Blaudeau JP, McGrath MP, Curtiss LA, Radom L (1997) J Chem Phys 107:5016–5021

    Article  CAS  Google Scholar 

  27. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, DeFrees DJ, Pople JA, Gordon MS (1982) J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  28. Binning RC, Curtiss LA (1990) J Comp Chem 11:1206–1216

    Article  CAS  Google Scholar 

  29. Rassolov VA, Pople JA, Ratner MA, Windus TL (1998) J Chem Phys 109:1223–1229

    Article  CAS  Google Scholar 

  30. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) J Comp Chem 22:976–984

    Article  CAS  Google Scholar 

  31. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) J Comp Chem 4:294–301

    Article  CAS  Google Scholar 

  32. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  33. Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  Google Scholar 

  34. Mennucci B, Cancès E, Tomasi J (1997) J Phys Chem B 101:10506–10517

    Article  CAS  Google Scholar 

  35. Cancès E, Mennucci B (1998) J Math Chem 23:309–326

    Article  Google Scholar 

  36. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  37. Cammi R, Tomasi J (1995) J Comp Chem 16:1449–1458

    Article  CAS  Google Scholar 

  38. Gaussian 03, Revision B.04 (2004) Gaussian, Inc., Wallingford CT

  39. Bondi A (1964) J Phys Chem 68:441

    Article  CAS  Google Scholar 

  40. Tomasi J, Pérsico M (1994) Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  41. Homem-de-Mello P, Mennucci B, Tomasi J, Da Silva ABF (2005) Theor Chem Accounts 113:274–280

    Article  CAS  Google Scholar 

  42. Breneman CM, Wiberg KB (1990) J Comp Chem 11:361–373

    Article  CAS  Google Scholar 

  43. Singh UC, Kollman PA (1984) J Comp Chem 5:129–145

    Article  CAS  Google Scholar 

  44. Bruns RE, Guadagnini PH, Souza AA (1996) Quim Nova 19:148–155

    Google Scholar 

  45. de Toledo RA, Santos MC, Honorio KM, Da Silva ABF, Cavalheiro ETG, Mazo LH (2006) Anal Lett 39:507–520

    Article  Google Scholar 

  46. http://chrom.tutms.tut.ac.jp/JINNO/DRUGDATA/55nortriptyline.html. Accessed in May/2004

  47. Gosser DK Jr (1994) Cyclic voltammetry simulation and analysis of reaction mechanisms. VCH, NY

    Google Scholar 

  48. Chew MYL (2003) Build Environ 38:1381–1384

    Article  Google Scholar 

  49. Dong A, Hou D, Sun D (2003) J Colloid Int Sci 266:276–281

    Article  CAS  Google Scholar 

  50. Taberna PL, Simon P, Fauvarque JF (2003) J Electrochem Soc 150:A292–A300

    Article  CAS  Google Scholar 

  51. Honorio KM, Da Silva ABF (2003) Int J Quantum Chem 95:126–132

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Brazilian Funding Institutions CNPq (The National Council for Scientific and Technological Development) and FAPESP (The State of São Paulo Research Foundation), processes numbers 01/14629-0, 01/06029-3, 05/59992-6, 07/05370-0 and 07/05155-1, for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo B. Suffredini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Toledo, R.A., Santos, M.C., Suffredini, H.B. et al. DFT and electrochemical studies on nortriptyline oxidation sites. J Mol Model 15, 945–952 (2009). https://doi.org/10.1007/s00894-009-0451-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0451-z

Keywords

Navigation