Skip to main content
Log in

A theoretical study on unusual intermolecular T-shaped X–H...π interactions between the singlet state HB=BH and HF, HCl, HCN or H2C2

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The unusual T-shaped X–H...π hydrogen bonds are found between the B=B double bond of the singlet state HB=BH and the acid hydrogen of HF, HCl, HCN and H2C2 using MP2 and B3LYP methods at 6-311++G(2df,2p) and aug-cc-pVTZ levels. The binding energies follow the order of HB=BH...HF>HB=BH...HCl>HB=BH...HCN>HB=BH...H2C2. The hydrogen-bonded interactions in HB=BH...HX are found to be stronger than those in H2C=CH2...HX and OCB≡BCO...HX. The analyses of natural bond orbital (NBO) and the electron density shifts reveal that the nature of the T-shaped X–H...π hydrogen-bonded interaction is that much of the lost density from the π-orbital of B=B bond is shifted toward the hydrogen atom of the proton donor, leading to the electron density accumulation and the formation of the hydrogen bond. The atoms in molecules (AIM) theory have also been applied to characterize bond critical points and confirm that the B=B double bond can be a potential proton acceptor.

The unusual T-shaped X–H...π hydrogen bonds are found between the B=B double bond of the singlet state HB=BH and the acid hydrogen of HF, HCl, HCN and H2C2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Takahashi O, Kohno Y, Saito K (2003) Chem Phys Lett 378:509–515. doi:10.1016/S0009-2614(03)01173-4

    Article  CAS  Google Scholar 

  2. Reynisson J, Steenken S (2003) J Mol Struct THEOCHEM 635:133–139. doi:10.1016/S0166-1280(03)00411-1

    Article  CAS  Google Scholar 

  3. McDowell SAC (2001) Phys Chem Chem Phys 3:2754–2757. doi:10.1039/b102386c

    Article  CAS  Google Scholar 

  4. Scheiner S, Grabowski SJ (2002) J Mol Struct 615:209–218. doi:10.1016/S0022-2860(02)00219-3

    Article  CAS  Google Scholar 

  5. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2002) J Am Chem Soc 124:104–112. doi:10.1021/ja0105212

    Article  CAS  Google Scholar 

  6. Sinnokrot MO, Valeev EF, Sherrill CD (2002) J Am Chem Soc 124:10887–10893. doi:10.1021/ja025896h

    Article  CAS  Google Scholar 

  7. Sinnokrot MO, Sherrill CD (2004) J Phys Chem A 108:10200–10207. doi:10.1021/jp0469517

    Article  CAS  Google Scholar 

  8. Park YC, Lee JS (2006) J Phys Chem A 110:5091–5095. doi:10.1021/jp0582888

    Article  CAS  Google Scholar 

  9. DiStasio RA Jr, Steele RP, Rhee YM, Shao Y, Head-Gordon M (2007) J Comput Chem 28:839–856. doi:10.1002/jcc.20604

    Article  CAS  Google Scholar 

  10. Rhee YM, DiStasio RA Jr, Lochan RC, Head-Gordon M (2006) Chem Phys Lett 426:197–203. doi:10.1016/j.cplett.2006.05.092

    Article  CAS  Google Scholar 

  11. Podeszwa R, Bukowski R, Szalewicz K (2006) J Phys Chem A 110:10345–10354. doi:10.1021/jp064095o

    Article  CAS  Google Scholar 

  12. DiStasio RA Jr, Helden GV, Steele RP, Head-Gordon M (2007) Chem Phys Lett 437:277–283. doi:10.1016/j.cplett.2007.02.034

    Article  CAS  Google Scholar 

  13. Lopes KC, Araujo RCMU, Rusu VH, Ramos MN (2007) J Mol Struct 834-836:258–261. doi:10.1016/j.molstruc.2006.11.029

    Article  CAS  Google Scholar 

  14. Ammal SSC, Venuvanalingam P (1998) J Chem Phys 109:9820–9830. doi:10.1063/1.477651

    Article  CAS  Google Scholar 

  15. Tsuzuki S, Uchimaru T, Matsumura K, Mikami M, Tanabe K (2000) Chem Phys Lett 319:547–554. doi:10.1016/S0009-2614(00)00170-6

    Article  CAS  Google Scholar 

  16. Ramos MN, Lopes KC, Silva WLV, Tavares AM, Castrini FA, Monte SAD et al. (2006) Spectrochim Acta Part A. Mol Biomol Spectrosc 63:383–390. doi:10.1016/j.saa.2005.05.024

    Article  Google Scholar 

  17. Cao D, Ren F, Feng X, Wang J, Li Y, Hu Z et al (2008) J Mol Struct THEOCHEM 849:76–83. doi:10.1016/j.theochem.2007.10.018

    Article  CAS  Google Scholar 

  18. Ren F, Cao D, Wang W, Wang J, Li Y, Hu Z et al (2008) Chem Phys Lett 455:32–37. doi:10.1016/j.cplett.2008.02.062

    Article  CAS  Google Scholar 

  19. Knight LB Jr, Kerr K, Miller PK, Arrington CA (1995) J Phys Chem 99:16842–16848. doi:10.1021/j100046a009

    Article  CAS  Google Scholar 

  20. Tague TJ, Andrews L (1994) J Am Chem Soc 116:4970–4976. doi:10.1021/ja00090a048

    Article  CAS  Google Scholar 

  21. Ruščić B, Mayhew CA, Berkowitz J (1988) J Chem Phys 88:5580–5593. doi:10.1063/1.454569

    Article  Google Scholar 

  22. Jouany C, Barthelat JC, Daudey JP (1987) Chem Phys Lett 136:52–56. doi:10.1016/0009-2614(87)87297-4

    Article  CAS  Google Scholar 

  23. Sana M, Leroy G, Henriet C (1989) J Mol Struct THEOCHEM 187:233–250. doi:10.1016/0166-1280(89)85164-4

    Article  Google Scholar 

  24. Curtiss LA, Pople JA (1989) J Chem Phys 91:4809–4812. doi:10.1063/1.456719

    Article  CAS  Google Scholar 

  25. Treboux G, Barthelat JC (1993) J Am Chem Soc 115:4870–4878. doi:10.1021/ja00064a056

    Article  CAS  Google Scholar 

  26. Perić M, Ostojić B, Engels B (1997) J Mol Spectrosc 182:280–294. doi:10.1006/jmsp.1996.7233

    Article  Google Scholar 

  27. Perić M, Ostojić B, Engels B (1997) J Mol Spectrosc 182:295–308. doi:10.1006/jmsp.1996.7234

    Article  Google Scholar 

  28. Xantheas SS, Dunning TH (1993) J Chem Phys 99:8774–8792. doi:10.1063/1.465599

    Article  CAS  Google Scholar 

  29. Dunning TH Jr (2000) J Phys Chem A 104:9062–9080. doi:10.1021/jp001507z

    Article  CAS  Google Scholar 

  30. Tanaka N, Tamezane T, Nishikiori H, Fujii T (2003) J Mol Struct THEOCHEM 631:21–28. doi:10.1016/S0166-1280(03)00129-5

    Article  CAS  Google Scholar 

  31. Novoa JJ, Mota F (2000) Chem Phys Lett 318:345–354. doi:10.1016/S0009-2614(00)00016-6

    Article  CAS  Google Scholar 

  32. Frisch MJ Trucks GA, Schlegel HB, Scuseria GE, Robb MA, Cheseman JR, Montgomery Jr JA, Vreeven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennuci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochtersky JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi L, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.03, Gaussian, Inc., Pittsburgh PA

  33. Reed AE, Curtis LA, Weinhold FA (1988) Chem Rev 88:899–926. doi:10.1021/cr00088a005

    Article  CAS  Google Scholar 

  34. Scheiner S, Kar T (2002) J Phys Chem A 106:1784–1789. doi:10.1021/jp013702z

    Article  CAS  Google Scholar 

  35. Bader RFW (1990) Atoms in molecules, a quantum theory. Oxford University Press, New York

    Google Scholar 

  36. Biegler-König FW, Bader RFW, Tang TH (1982) J Comput Chem 3:317–328. doi:10.1002/jcc.540030306

    Article  Google Scholar 

  37. Duijineveldt FB, van Duijineveldt-van de Rijdt JCM, Lenthe JHV (1994) Chem Rev 94:1873–1885. doi:10.1021/cr00031a007

    Article  Google Scholar 

  38. Boys SF, Bernardi F (1970) Mol Phys 19:553–566. doi:10.1080/00268977000101561

    Article  CAS  Google Scholar 

  39. Ebrahimi A, Roohi H, Habibi M, Hasannejad M (2006) Chem Phys 327:368–372. doi:10.1016/j.chemphys.2006.05.009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate gratefully Professor Joel Liebman for the encouragement and the helpful advice and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-de Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Fd., Cao, Dl., Wang, Wl. et al. A theoretical study on unusual intermolecular T-shaped X–H...π interactions between the singlet state HB=BH and HF, HCl, HCN or H2C2 . J Mol Model 15, 515–523 (2009). https://doi.org/10.1007/s00894-008-0415-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0415-8

Keywords

Navigation