Skip to main content
Log in

Theoretical study on the ground state intramolecular proton transfer (IPT) and solvation effect in two Schiff bases formed by 2-aminopyridine with 2-hydroxy-1- naphthaldehyde and 2-hydroxy salicylaldehyde

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The tautomerization mechanism the isolated and monohydrated forms of two Schiff bases 1 and 2, and the effect of solvation on the proton transfer from enol-imine form to the keto-enamine form have been investigated using the B3LYP hybrid density functional method at the 6-31G** basis set level. The barrier heights for H2O-assisted reactions are significantly lower than that of unassisted tautomerization reaction in the gas phase. Nonspecific solvent effects have also been taken into account by using the continuum model (IPCM) of four different solvent. The tautomerization energies and the potential energy barriers are decreased by increasing solvent polarity.

The tautomerization mechanism the isolated and monohydrated forms of two Schiff bases 1 and 2, and the effect of solvation on the proton transfer from enol-imine form to the keto-enamine form have been investigated using the B3LYP hybrid density functional method at the 6-31G** basis set level

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Inabe T (1991) New J Chem 15:129–136

    CAS  Google Scholar 

  2. Feringa BL, Jager WF, De Lange B (1993) Tetrahedron 49:8267–8310

    Article  CAS  Google Scholar 

  3. Todd MD, Todd RH, Mikkelsen KV (1994) J Mol Struct 120:49–71

    CAS  Google Scholar 

  4. Lewis JW, Sandorfy C (1982) Can J Chem 60:1727–1737

    Article  CAS  Google Scholar 

  5. Becker RS, Lenoble C, Zein A (1987) J Phys Chem 91:3509–3517

    Article  CAS  Google Scholar 

  6. Inabe T, Luneau I, Mitani T, Maruyama Y, Takeda S (1994) Bull Chem Soc Jpn 67:612–621

    Article  CAS  Google Scholar 

  7. Seliger J, Zagar V, Blinc R, Hadjoudis E, Milia F (1990) Chem Phys 142:237–244

    Article  CAS  Google Scholar 

  8. Ledbetter JW Jr (1968) J Phys Chem 72:4111

    Article  CAS  Google Scholar 

  9. Alarcón SH, Olivieri AC, Labadie GR, Cravero RM, González-Sierra M (1995) Tetrahedron 51:4619–4626

    Article  Google Scholar 

  10. Alarcón SH, Olivieri AC, Labadie GR, Cravero RM, Labadie G, González-Sierra M (1995) J Phys Org Chem 8:713–720

    Article  Google Scholar 

  11. Alarcón SH, Olivieri AC, Nordon A, Haris RK (1996) J Chem Soc Perkin Trans 2:2293–2296

    Google Scholar 

  12. Yildiz M, Kilic Z, Hokelek T (1998) J Mol Struct 441:1–10

    Article  CAS  Google Scholar 

  13. Kessissoglou DP, Raptopoulou CP, Bakalbassis EG, Terzis A, Mrozinski J (1992) Inorg Chem 31:4339–4345

    Article  CAS  Google Scholar 

  14. Bhatia SC, Bindlish JM, Saini AR, Jain PC (1981) J Chem Soc Dalton Trans.1773–1779

  15. Calligaris M, Nardin G, Randaccio L (1972) Coord Chem Rev 7:385–403

    Article  CAS  Google Scholar 

  16. Maslen HS, Waters TN (1975) Coord Chem Rev 17:137–176

    Article  CAS  Google Scholar 

  17. Stewart J, Lingafelter EC (1959) Acta Crystallogr 12:842–845

    Article  CAS  Google Scholar 

  18. Chen D, Martel AE (1987) Inorg Chem 26:1026–1030

    Article  CAS  Google Scholar 

  19. Pyrz JW, Roe AL, Stern LJ, Que L Jr (1985) J Am Chem Soc 107:614–620

    Article  CAS  Google Scholar 

  20. Costamagna J, Vargas J, Latorre R, Alvarado A, Mena G (1992) Coord Chem Rev 119:67–88

    Article  CAS  Google Scholar 

  21. Dixon NE, Gazzalo C, Watters JJ, Blakeley RL, Zerner B (1975) J Am Chem Soc 97:4131–4133

    Article  CAS  Google Scholar 

  22. Walsh CT, Orme-Johnson WH (1987) Biochemistry 26:4901–4906

    Article  CAS  Google Scholar 

  23. Nagy P, Harzfeld R (1998) Spectr Lett 31:221–232

    Article  CAS  Google Scholar 

  24. Kamounah FS, Salman SR, Mahmoud AAK (1998) Spect Lett 31:1557–1567

    Article  CAS  Google Scholar 

  25. Rospenk M, Król-Starzomska I, Filarowski A, Koll A (2003) Chem Phys 287:113–124

    Article  CAS  Google Scholar 

  26. Cohen MD, Flavian S, Leiserowitz L (1967) J. Chem. Soc. B 329–334

  27. Harzfeld R, Nagy P (2001) Curr Org Chem 5:373–394

    Article  Google Scholar 

  28. Dudek GO, Dudek EP (1966) J Am Chem Soc 88:2407–2412

    Article  CAS  Google Scholar 

  29. Dziembowska T, Rozwadowski Z, Filarowski A, Hansen PE (2001) Magn Reson Chem 39:67–87

    Article  Google Scholar 

  30. Salman SR, Saleh NAI (1997) Spectr Lett 30:1289–1300

    Article  CAS  Google Scholar 

  31. Kownacki K, Mordzinski A, Wilbrandt R, Grabowska A (1994) Chem Phys Lett 227:270–276

    Article  CAS  Google Scholar 

  32. Grabowska A, Kownacki K, Kaczmarek L (1994) J Lumin. 60-1:886–890

  33. Ogawa K, Harada J, Fujiwara T, Yoshida S (2001) J Phys Chem A 105:3425–3427

    Article  CAS  Google Scholar 

  34. Ledbetter JW Jr (1977) J Phys Chem 81:54–59

    Article  CAS  Google Scholar 

  35. Cohen MD, Flavian S (1967) J Chem Soc. B 317

  36. Allen M, Roberts JD (1980) J Org Chem 45:130–135

    Article  CAS  Google Scholar 

  37. Percy GC, Thornton DA (1972) J Inorg Nucl Chem 34:3357–3367

    Article  CAS  Google Scholar 

  38. Salman SR, Lindon JC, Farrant RD, Carpenter TA (1993) Magn Reson Chem 31:991–994

    Article  CAS  Google Scholar 

  39. Gavranic M, Kaitner B, Mestrovis E (1996) J Chem Crystallogr 26:23–28

    Article  CAS  Google Scholar 

  40. Kaitner B, Pavlovic G (1996) Acta Crystallogr C 52:2573–2575

    Article  Google Scholar 

  41. Zgierski M, Grabowska A (2000) J Chem Phys 113:7845–7852

    Article  CAS  Google Scholar 

  42. Kletski M, Milov A, Metelisa A, Knyazhansky M (1997) J Photochem Photobiol A 110:267–270

    Article  Google Scholar 

  43. Fernández-G JM, del Rio-Portilla F, Quiroz-García B, Toscano RA, Salcedo R (2001) J Mol Struct 561:197–207

    Article  Google Scholar 

  44. Antonov L, Fabian MF, Nedeltcheva D, Kamounah FS (2000) J Chem Soc Perkin Trans 2:1173–1179

    Google Scholar 

  45. Joshi H, Kamounah FS, van der Zwan G, Gooijer C, Antonov L (2001) J Chem Soc Perkin Trans 12:2303–2308

    Google Scholar 

  46. Herzfeld R, Nagy P (1999) Spectrosc Lett 32:57–71

    Article  CAS  Google Scholar 

  47. Unver H, Zengin DM, Guven K (2000) J Chem Crystallogr 30:359–364

    Article  CAS  Google Scholar 

  48. Popović Z, Roje V, Pavlović G, Matković-Čalogović D, Giester G (2001) J Mol Struct 597:39–47

    Article  Google Scholar 

  49. Hadjoudis E, Vitterakis M, Maustakali-Marridis I (1987) Tetrahedron 43:1345–1360

    Article  CAS  Google Scholar 

  50. Hamilton DE, Drago RS, Zombeck A (1987) J Am Chem Soc 109:374–379

    Article  CAS  Google Scholar 

  51. Nishida Y, Kino K, Kida S (1987) J Chem Soc Dalton Trans 1157–1161

  52. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  53. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  54. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  55. Foresman JB, Keith TA, Wiberg KB, Snoonian J, Frisch MJ (1996) J Phys Chem 100:16098–16104

    Article  CAS  Google Scholar 

  56. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  57. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  58. Frisch MJ et al (2003) Gaussian, Inc., Pittsburgh PA

  59. Nazir H, Yildiz M, Yilmaz H, Tahir MN, Ulku D (2000) J Mol Struct 524:241–250

    Article  CAS  Google Scholar 

  60. Moustakali-Mavridis I, Hadjoudis E, Mavridis A (1978) Acta Crystallogr Sect B 34:3709–3715

    Article  Google Scholar 

  61. Gilli P, Bertolasi V, Ferretti V, Gilli G (2000) J Am Chem Soc 122:10405–10417

    Article  CAS  Google Scholar 

  62. Gavranic M, Kaitner B, Mestrovic E (1996) J Chem Crystallogr 26:23–28

    Article  CAS  Google Scholar 

  63. Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) J Chem Soc Perkin Trans 2:S1–S19

    Google Scholar 

  64. Kaitner B, Pavlovic G (1996) Acta Crystallogr Sect C 52:2573–2575

    Article  Google Scholar 

  65. Elmali A, Kabak M, Kavlakoglu E, Elerman Y, Durlu TN (1999) J Mol Struct 510:207–214

    Article  CAS  Google Scholar 

  66. Hokelek T, Gunduz N, Hayvali Z, Kilic Z (1995) Acta Crystallogr C 51:880–884

    Article  Google Scholar 

  67. Hokelek T, Gunduz N, Hayvali Z, Kilic Z (1995) J Chem Crystallogr 25:831–836

    Article  CAS  Google Scholar 

  68. Elerman Y, Svoboda I, Fuess ZH (1991) Kristallogr 196:309–311

    CAS  Google Scholar 

  69. Elerman Y, Elmali A, Kabak M, Aydin M, Peder M (1994) J Chem Cryst 24:603–606

    Article  CAS  Google Scholar 

  70. Elerman Y, Elmali A, Svoboda I (1995) Acta Cryst C 51:2344–2346

    Article  Google Scholar 

  71. Elmali A, Ozbey S, Kendi E, Kabak M, Elerman Y (1995) Acta Cryst C 51:1878–1880

    Article  Google Scholar 

  72. Ledesma G, Ibanez G, Escandar G, Olivieri AC (1997) J Mol Struct 415:115–121

    Article  CAS  Google Scholar 

  73. Salman SR, Shawkat SH, Al-Obaidi GM (1990) Can J Spectrosc 35:25–27

    CAS  Google Scholar 

  74. Asiri MA, Badahdah KO (2007) Molecules 12:1796–1804

    Article  CAS  Google Scholar 

  75. Boys SF, Bernardi F (1970) Mol Phys 19:553–&

  76. Rodriquez CF, Cunje A, Shoeib T, Chu IK, Hopkinson AC, Siu KWM (2000) J Phys Chem A 104:5023–5028

    Article  CAS  Google Scholar 

  77. Liang JY, Lipscomb WN (1987) Biochemistry 26:5293–5301

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Cumhuriyet University, Sivas (Turkey) for access to the Gaussian 03 program packages

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Tezer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tezer, N., Karakus, N. Theoretical study on the ground state intramolecular proton transfer (IPT) and solvation effect in two Schiff bases formed by 2-aminopyridine with 2-hydroxy-1- naphthaldehyde and 2-hydroxy salicylaldehyde. J Mol Model 15, 223–232 (2009). https://doi.org/10.1007/s00894-008-0397-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0397-6

Keywords

Navigation