Skip to main content

Advertisement

Log in

Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have developed a fully automated method, InterProSurf, to predict interacting amino acid residues on protein surfaces of monomeric 3D structures. Potential interacting residues are predicted based on solvent accessible surface areas, a new scale for interface propensities, and a cluster algorithm to locate surface exposed areas with high interface propensities. Previous studies have shown the importance of hydrophobic residues and specific charge distribution as characteristics for interfaces. Here we show differences in interface and surface regions of all physical chemical properties of residues as represented by five quantitative descriptors. In the current study a set of 72 protein complexes with known 3D structures were analyzed to obtain interface propensities of residues, and to find differences in the distribution of five quantitative descriptors for amino acid residues. We also investigated spatial pair correlations of solvent accessible residues in interface and surface areas, and compared log-odds ratios for interface and surface areas. A new scoring method to predict potential functional sites on the protein surface was developed and tested for a new dataset of 21 protein complexes, which were not included in the original training dataset. Empirically we found that the algorithm achieves a good balance in the accuracy of precision and sensitivity by selecting the top eight highest scoring clusters as interface regions. The performance of the method is illustrated for a dimeric ATPase of the hyperthermophile, Methanococcus jannaschii, and the capsid protein of Human Hepatitis B virus. An automated version of the method can be accessed from our web server at http://curie.utmb.edu/prosurf.html.

Comparison of the experimentally observed interface (blue) of the dimeric ATPase of the hyperthermophile Methanococcus jannaschii with the prediction of InterProSurf using a cluster (red) and patch (yellow) algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kinoshita K, Nakamura H (2003) Curr Opin Struct Biol 13:396–400

    Article  CAS  Google Scholar 

  2. Archakov AI, Govorun VM, Dubanov AV, Ivanov YD, Veselovsky AV, Lewi P, Janssen P (2003) Proteomics 3:380–391

    Article  CAS  Google Scholar 

  3. Lo Conte L, Chothia C, Janin J (1998) J Mol Biol 285:2177–2198

    Article  Google Scholar 

  4. Janin J, Chothia C (1990) J Bio Chem 265:16027–16030

    CAS  Google Scholar 

  5. Tsai CJ, Lin SL, Wolfson HJ, Nussinov R (1997) Protein Sci 6:53–64

    Article  CAS  Google Scholar 

  6. Hu ZJ, Ma BY, Wolfson H, Nussinov R (2000) Proteins-Structure Function Genetics 39:331–342

    Article  CAS  Google Scholar 

  7. Jones S, Thornton JM (1996) Proc Natl Acad Sci USA 93:13–20

    Article  CAS  Google Scholar 

  8. McCoy AJ, Epa VC, Colman PM (1997) J Mol Biol 268:570–584

    Article  CAS  Google Scholar 

  9. Thorn KS, Bogan AA (2001) Bioinformatics 17:284–285

    Article  CAS  Google Scholar 

  10. Bader GD, Betel D, Hogue CWV (2003) Nucleic Acids Res 31:248–250

    Article  CAS  Google Scholar 

  11. Xenarios I, Salwinski L, Duan XQJ, Higney P, Kim SM, Eisenberg D (2002) Nucleic Acids Res 30:303–305

    Article  CAS  Google Scholar 

  12. Xenarios L, Eisenberg D (2001) Curr Opin Biotechnol 12:334–339

    Article  CAS  Google Scholar 

  13. DeLano WL (2002) Curr Opin Struct Biol 12:14–20

    Article  CAS  Google Scholar 

  14. DeLano WL, Ultsch MH, de Vos AM, Wells JA (2000) Science 287:1279–1283

    Article  CAS  Google Scholar 

  15. Kortemme T, Baker D (2002) Proc Natl Acad Sci USA 99:14116–14121

    Article  CAS  Google Scholar 

  16. Bogan AA, Thorn KS (1998) J Mol Biol 280:1–9

    Article  CAS  Google Scholar 

  17. Clackson T, Wells JA (1995) Science 267:383–386

    Article  CAS  Google Scholar 

  18. Jones S, Thornton JM (1997) J Mol Biol 272:133–143

    Article  CAS  Google Scholar 

  19. Jones S, Thornton JM (1997) J Mol Biol 272:121–132

    Article  CAS  Google Scholar 

  20. Jones S, Thornton JM (1995) Prog Biophys Mol Biol 63:31–35

    Article  CAS  Google Scholar 

  21. Jones S, Marin A, Thornton JM (2000) Protein Eng 13:77–82

    Article  CAS  Google Scholar 

  22. Bordner AJ, Abagyan R (2005) Proteins: Structure, Function, Bioinformatics 60:353–366

    Article  CAS  Google Scholar 

  23. Murakami Y, Jones S (2006) Bioinformatics 22:1794–1795

    Article  CAS  Google Scholar 

  24. Brinda KV, Kannan N, Vishveshwara S (2002) Protein Eng 15:265–277

    Article  CAS  Google Scholar 

  25. Landgraf R, Xenarios I, Eisenberg D (2001) J Mol Biol 307:1487–1502

    Article  CAS  Google Scholar 

  26. Morrison KL, Weiss GA (2001) Curr Opin Chem Biol 5:302–307

    Article  CAS  Google Scholar 

  27. Kortemme T, Kim DE, Baker D (2004) Sci STKE 219:12

    Google Scholar 

  28. Massova I, Kollman PA (1999) J Am Chem Soc 121:8133–8143

    Article  CAS  Google Scholar 

  29. Zhou HX, Shan Y (2001) Proteins 44:336–343

    Article  CAS  Google Scholar 

  30. Fariselli P, Pazos F, Valencia A, Casadio R (2002) Eur J Biochem 269:1356–1361

    Article  CAS  Google Scholar 

  31. Koike A, Takagi T (2004) Protein Engineering Design & Selection 17:165–173

    Article  CAS  Google Scholar 

  32. Bradford JR, Westhead DR (2004) Bioinformatics 21:1487–1494

    Article  CAS  Google Scholar 

  33. Gallet X, Charloteaux B, Thomas A, Brasseur R (2000) J Mol Biol 302:917–926

    Article  CAS  Google Scholar 

  34. Bock JR, Gough DA (2001) Bioinformatics 17:455–460

    Article  CAS  Google Scholar 

  35. Gao Y, Wang RX, Lai LH (2004) J Mol Model 10:44–54

    Article  CAS  Google Scholar 

  36. Yao H, Kristensen DM, Mihalek I, Sowa ME, Shaw C, Kimmel M, Kavraki L, Lichtarge O (2003) J Mol Biol 326:255–261

    Article  CAS  Google Scholar 

  37. Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, Martz E, Ben-Tal N (2003) Bioinformatics 19:163–164

    Article  CAS  Google Scholar 

  38. Chakrabarti P, Janin J (2002) Proteins 47:334–343

    Article  CAS  Google Scholar 

  39. Bahadur RP, Chakrabarti P, Rodier F, Janin J (2004) J Mol Biol 336:943–955

    Article  CAS  Google Scholar 

  40. Glaser F, Steinberg DM, Vakser IA, Ben-Tal N (2001) Proteins-Structure Function Genetics 43:89–102

    Article  CAS  Google Scholar 

  41. Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N (2005) Nucleic Acids Res 33:W299–W302

    Article  CAS  Google Scholar 

  42. Neuvirth H, Raz R, Schreiber G (2004) J Mol Biol 338:181–199

    Article  CAS  Google Scholar 

  43. Ogmen U, Keskin O, Aytuna AS, Nussinov R, Gursoy A (2005) Nucleic Acids Res 33:W331–W336

    Article  CAS  Google Scholar 

  44. Mihalek I, Res I, Lichtarge O (2006) Bioinformatics 22:1656–1657

    Article  CAS  Google Scholar 

  45. Venkatarajan MS, Braun W (2001) J Mol Model 7:445–453

    Article  CAS  Google Scholar 

  46. Negi SS, Kolokoltsov AA, Schein CH, Davey RA, Braun W (2006) J Mol Model 12:921–929

    Article  CAS  Google Scholar 

  47. Altschul S, Madden T, Schaffer A, Zhang JH, Zhang Z, Miller W, Lipman D (1998) Faseb J 12:A1326–A1326

    Google Scholar 

  48. Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  49. Fraczkiewicz R, Braun W (1998) J Comp Chem 19:319

    Article  CAS  Google Scholar 

  50. Liang S, Liu Z, Li W, Ni L, Lai L (2000) Biopolymers 54:515–523

    Article  CAS  Google Scholar 

  51. Singh RK, Tropsha A, Vaisman II (1996) J Comp Biol 3:213–221

    Article  CAS  Google Scholar 

  52. Linde Y, Buzo A, Gray RM (1980) IEEE Trans Commun 28:84–95

    Article  Google Scholar 

  53. Sayood K (2000) Introduction to data compression, 2nd edn. Morgan Kaufmann Publishers Inc

  54. Patane G, Russo M (2001) Neural Netw 14:1219–1237

    Article  CAS  Google Scholar 

  55. Equitz HW (1989) IEEE Trans Acoustics Speech Signal Process 37:1568–1575

    Article  Google Scholar 

  56. Cosman PC, Oehler KL, Riskin EA, Gray RM (1993) Proc I E E E 81:1326–1341

    CAS  Google Scholar 

  57. Lin CL, Tai SC (1998) IEEE Trans Circuits Syst, II Analog Digit Signal Process 45:432–435

    Article  Google Scholar 

  58. Baldi P, Brunak S, Chauvin Y, Andersen CAF, Nielsen H (2000) Bioinformatics 16:412–424

    Article  CAS  Google Scholar 

  59. Ma B, Elkayam T, Wolfson H, Nussinov R (2003) Proc Natl Acad Sci USA 100:5772–5777

    Article  CAS  Google Scholar 

  60. Nagano N, Ota M, Nishikawa K (1999) FEBS Lett 458:69–71

    Article  CAS  Google Scholar 

  61. Karlin S, Zhu ZY, Baud F (1999) Proc Natl Acad Sci USA 96:12500–12505

    Article  CAS  Google Scholar 

  62. Mathura VS, Schein CH, Braun W (2003) Bioinformatics 19:1381–1390

    Article  CAS  Google Scholar 

  63. Zarembinski TI, Hung LW, Mueller-Dieckmann HJ, Kim KK, Yokota H, Kim R, Kim SH (1998) Proc Natl Acad Sci USA 95:15189–15193

    Article  CAS  Google Scholar 

  64. Wynne SA, Crowther RA, Leslie AGW (1999) Mol Cell 3:771–780

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Grants R21 AI055746 and R01 AI064913.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Braun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 260 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negi, S.S., Braun, W. Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces. J Mol Model 13, 1157–1167 (2007). https://doi.org/10.1007/s00894-007-0237-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0237-0

Keywords

Navigation