Skip to main content
Log in

Possible dynamic anchor points in a benzoxazinone derivative–human oxytocin receptor system — a molecular docking and dynamics calculation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this study, we performed a molecular docking and dynamics simulation for a benzoxazinone–human oxytocin receptor system to determine the possible hydrophobic and electrostatic interaction points in the dynamic complex. After the homology modeling, the ligand was docked into the putative active using AutoDock 3.05. After the application of energetic and structural filters, the complexes obtained were further refined with a simulated annealing protocol (AMBER8) to remove steric clashes. Three complexes were selected for subjection to the molecular dynamics simulation (5 ns), and the results on the occurrence of average anchor points showed a stable complex between the benzoxazinone derivative and the receptor. The complex could be used as a good starting point for further analysis with site-directed mutagenesis, or further computational research.

The location of the ligands (complex B – blue; complex E – red; and complex F – green) in the transmembrane regions (TM1 – red; TM2 – blue; TM3 – yellow; TM4 – purple; TM5 – orange; TM6 – cyan; TM7 – pink) of the hOTR. For clarity, the EC and IC loops are not shown

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

OTR:

Oxytocin receptor

OT:

Oxytocin

hOTR:

Human oxytocin receptor

MD:

Molecular dynamics

BZX:

Benzoxazinone

GPCRs:

G-protein coupled receptors

TM:

Transmembrane

SA:

Simulated annealing

bRho:

Bovine rhodopsin

RMSD:

Root-mean-square distance

GAFF:

General Amber Force Field

ΔG bind :

Estimated free energy of binding

EC:

Extracellular

IC:

Intracellular

References

  1. Cassoni P, Fulcheri E, Carcangiu ML, Stella A, Deaglio S, Bussolati G (2000) J Pathol 190:470–477

    Article  CAS  PubMed  Google Scholar 

  2. Thibonnier M, Conarty DM, Preston JA, Plesnicher CL, Dweik RA, Erzurum SC (1999) Endocrinology l140:1301–1309

    Article  Google Scholar 

  3. Gutkowska J, Jankowski M, Lambert C, Mukaddam-Daher S, Zingg HH, McCann SM (1997) PNAS 94:11704–11709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Breton C, Haenggeli C, Barberis C, Heitz F, Bader CR, Bernheim L, Tribollet E (2002) J Clin Endocrinol Metab 87:1415–1418

    Article  CAS  PubMed  Google Scholar 

  5. Copland JA, Ives KL, Simmons DJ, Soloff MS (1999) Endocrinology 140:4371–4374

    Article  CAS  PubMed  Google Scholar 

  6. (2000) Pharm J 264:871 http://www.pjonline.com/Editorial/20000610/clinical/prematurebirth.html

  7. Goodwin TM, Valenzuela G, Silver H, Hayashi R, Creasy GW, Lane R (1996) Am J Perinatol 13:143–149

    Article  CAS  PubMed  Google Scholar 

  8. Williams PD, Clineschmidt BV, Erb JM, Freidinger RM, Guidotti MT, Lis EV, Pawluczyk JM, Pettibone DJ, Reiss DR, Veber DF, Woyden CJ (1995) J Med Chem 38:4634–4636

    Article  CAS  PubMed  Google Scholar 

  9. Bell IB, Erb JM, Freidinger RM, Gallicchio SN, Guare JP, Guidotti MT, Halpin RA, Hobbs DW, Homnick CF, Kuo MS, Lis EV, Mathre DJ, Michelson SR, Pawluczyk JM, Pettibone DJ, Reiss DR, Vickers S, Williams PD, Woyden S (1998) J Med Chem 41:2146–2163

    Article  CAS  PubMed  Google Scholar 

  10. Kuo MS, Bock MG, Freidinger RM, Guidotti MT, Lis EV, Pawluczyk JM, Perlow DS, Pettibone DJ, Quigley AG, Reiss DR, Williams PD, Woyden CJ (1998) Bioorg Med Chem Lett 8:3081–3086

    Article  CAS  PubMed  Google Scholar 

  11. Giedoñ A, Kamierkiewicz R, lusarz R, Ciarkowski J (2002) J Comput Aided Mol Des 12:1085–1104

    Google Scholar 

  12. Hawtin SR, Ha SN, Pettibone DJ, Wheatley M (2005) FEBS Lett 579:349–356

    Article  CAS  PubMed  Google Scholar 

  13. Jójárt B, Martinek TA, Márki Á (2005) J Comput Aided Mol Des 19:341–356

    Article  PubMed  Google Scholar 

  14. Wyatt PG, Allen MJ, Chilcott J, Foster A, Livermore DG, Mordaunt JE, Scicinski J, Woollard P (2002) Bioorg Med Chem Lett 12:1399–1404

    Article  CAS  PubMed  Google Scholar 

  15. Wyatt PG, Allen MJ, Chilcott J, Gardner CJ, Livermore DG, Mordaunt JE, Nerozzi F, Patel M, Perren MJ, Weingarten GG, Shabbir S, Wollard PM, Zhou P (2002) Bioorg Med Chem Lett 12:1405–1411

    Article  CAS  PubMed  Google Scholar 

  16. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Science 289:739–745

    Article  CAS  PubMed  Google Scholar 

  17. Molecular Operating Environment (MOE 2004.03). CCG, 1255 University St, Suite 1600, Montreal, Quebec, Canada, H3B3X3

  18. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  19. Case DA, Darden TA, Cheatham TE, III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister C, Caldwell JW, Ross WS, Kollman PA (2004) AMBER 8, University of California, San Francisco

  20. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  21. Halgren TA (1996) J Comput Chem 17:490–519, 520–552, 553–586, 587–615, 616–641

    Article  CAS  Google Scholar 

  22. Mehler EL, Solmajer T (1991) Protein Eng 4:903−910

    Article  CAS  PubMed  Google Scholar 

  23. Wallace AC, Laskowski RA, Thornton JM (1995) Protein Eng 8:127–134

    Article  CAS  PubMed  Google Scholar 

  24. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  25. Zaffran T, Cieplak P, Dupradeau F-Y (2005) RESP ESP charge Derive (RED) II. The Scripps Research Institute, La Jolla, CA, USA

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam lM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Cen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B01. Gaussian, Pittsburgh, PA

  27. Laskowski RA, Moss AS, Thornton JM (1993) J Mol Biol 231:1049–1067

    Article  CAS  PubMed  Google Scholar 

  28. Gether U (2000) Endocr Rev 21:90–113

    Article  CAS  PubMed  Google Scholar 

  29. Pogozheva ID, Lomize AL, Mosberg HI (1998) Biophys J 75:612–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Archer E, Maigret B, Escrieut C, Pradayrol L, Fourmy D (2003) TIPS 24:36–40

    CAS  PubMed  Google Scholar 

  31. Moro S, Spalluto G, Jacobson KA (2005) TIPS 26:44–50

    CAS  PubMed  Google Scholar 

  32. Fernandez JH, Neshich G, Camargo AC (2004) Genet Mol Res 4:554–563

    Google Scholar 

  33. Gether U, Kobilka BK (1998) J Biol Chem l273:17979–17982

    Article  Google Scholar 

  34. Śluzarz MJ, Giedoñ A, Ślusarz R, Trojnar J, Meadows R, Ciarkowski J (2005) QSAR Comb Sci 24:603–610

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Centenarium Foundation of Gedeon Richter and the National Council for Research and Technology (NKFP) Budapest (RET 08/2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balázs Jójárt.

Additional information

Supplementary Material

The 3D-coordinates of complex B, E and F in pdb format are available as supplementary material, together with the parameter topology file of BZX.

Electronic supplementary material

These files are unfortunately not in the Publisher's archive anymore:

  • Supplement 1 (PDB 44 kb)

  • Supplement 2 (PDB 291 kb)

  • Supplement 3 (PDB 291 kb)

  • Supplement 4 (PDB 291 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jójárt, B., Márki, Á. Possible dynamic anchor points in a benzoxazinone derivative–human oxytocin receptor system — a molecular docking and dynamics calculation. J Mol Model 13, 1–10 (2007). https://doi.org/10.1007/s00894-006-0112-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-006-0112-4

Keywords

Navigation