Skip to main content
Log in

Extremophilic models for astrobiology: haloarchaeal survival strategies and pigments for remote sensing

  • SPECIAL FEATURE: REVIEW
  • 12th International Congress on Extremophiles
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Recent progress in extremophile biology, exploration of planetary bodies in the solar system, and the detection and characterization of extrasolar planets are leading to new insights in the field of astrobiology and possible distribution of life in the universe. Among the many extremophiles on Earth, the halophilic Archaea (Haloarchaea) are especially attractive models for astrobiology, being evolutionarily ancient and physiologically versatile, potentially surviving in a variety of planetary environments and with relevance for in situ life detection. Haloarchaea are polyextremophilic with tolerance of saturating salinity, anaerobic conditions, high levels of ultraviolet and ionizing radiation, subzero temperatures, desiccation, and toxic ions. Haloarchaea survive launches into Earth’s stratosphere encountering conditions similar to those found on the surface of Mars. Studies of their unique proteins are revealing mechanisms permitting activity and function in high ionic strength, perchlorates, and subzero temperatures. Haloarchaea also produce spectacular blooms visible from space due to synthesis of red–orange isoprenoid carotenoids used for photoprotection and photorepair processes and purple retinal chromoproteins for phototrophy and phototaxis. Remote sensing using visible and infrared spectroscopy has shown that haloarchaeal pigments exhibit both a discernable peak of absorption and a reflective “green edge”. Since the pigments produce remotely detectable features, they may influence the spectrum from an inhabited exoplanet imaged by a future large space-based telescope. In this review, we focus primarily on studies of two Haloarchaea, Halobacterium sp. NRC-1 and Halorubrum lacusprofundi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

UV:

Ultraviolet

LUCA:

Last universal common ancestor

pI:

Isoelectric point

HOG:

Haloarchaeal orthologous group

BR:

Bacteriorhodopsin

References

  • Anderson IJ, DasSarma P, Lucas S, Copeland A, Lapidus A, Del Rio TG, Tice H, Dalin E, Bruce DC, Goodwin L, Pitluck S, Sims D, Brettin TS, Detter JC, Han CS, Larimer F, Hauser L, Land M, Ivanova N, Richardson P, Cavicchioli R, DasSarma S, Woese CR, Kyrpides NC (2016) Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34. Standards in Genomic Sciences 11:1. https://doi.org/10.1186/s40793-016-0194-2

    Article  CAS  Google Scholar 

  • Armstrong GA, Alberti M, Hearst JE (1990) Conserved enzymes mediate the early reactions of carotenoid biosynthesis in nonphotosynthetic and photosynthetic prokaryotes. Proc Natl Acad Sci 87:9975–9979

    CAS  PubMed  Google Scholar 

  • Baliga NS, Kennedy SP, Ng WV, Hood L, DasSarma S (2001) Genomic and genetic dissection of an archaeal regulon. Proc Natl Acad Sci 98:2521–2525

    CAS  PubMed  Google Scholar 

  • Bayley H, Huang K-S, Radhakrishnan R, Ross AH, Takagaki Y, Khorana HG (1981) Site of attachment of retinal in bacteriorhodopsin. Proc Natl Acad Sci 78:2225–2229

    CAS  PubMed  Google Scholar 

  • Bolcar MR, Aloezos S, Bly VT, Collins C, Crooke J, Dressing CD, Fantano L, Feinberg, LD, France, K, Gochar G, Gong Q, Hylan JE, Jones A., Linares I, Postman M, Pueyo L, Roberge A, Sacks L, Tompkins S, West G (2017) The large UV/optical/infrared surveyor (LUVOIR): decadal mission concept design update. In: MacEwen HA, Breckinridge JB (eds) Proceedings Volume 10398, UV/Optical/IR space telescopes and instruments: innovative technologies and concepts VIII. Society of Photo-Optical Instrumentation Engineers Optical Engineering + Applications 2017, p 9. https://doi.org/10.1117/12.2273848

  • Brandt TD, Spiegel DS (2014) Prospects for detecting oxygen, water, and chlorophyll on an exo-Earth. Proc Natl Acad Sci 111:13278–13283

    CAS  PubMed  Google Scholar 

  • Britton KL, Baker PJ, Fisher M, Ruzheinikov S, Gilmour DJ, Bonete M-J, Ferrer J, Pire C, Esclapez J, Rice DW (2006) Analysis of protein solvent interactions in glucose dehydrogenase from the extreme halophile Haloferax mediterranei. Proc Natl Acad Sci 103:4846–4851

    CAS  PubMed  Google Scholar 

  • Capes MD, Coker JA, Gessler R, Grinblat-Huse V, DasSarma SL, Jacob CG, Kim J-M, DasSarma P, DasSarma S (2011) The information transfer system of halophilic archaea. Plasmid 65:77–101

    CAS  PubMed  Google Scholar 

  • Capes MD, DasSarma P, DasSarma S (2012) The core and unique proteins of haloarchaea. BMC Geno 13:39

    CAS  Google Scholar 

  • Clark RN, Swayze GA, Wise R, Livo KE, Hoefen T, Kokaly RF, Sutley SJ (2007) USGS digital spectral library splib06a. US Geol Surv Digit Data Ser 231:2007

    Google Scholar 

  • Coker JA, DasSarma P, Kumar J, Müller JA, DasSarma S (2007) Transcriptional profiling of the model Archaeon Halobacterium sp. NRC-1: responses to changes in salinity and temperature. Saline Syst 3:6.

    PubMed Central  PubMed  Google Scholar 

  • Dalton J, Palmer-Moloney L, Rogoff D, Hlavka C, Duncan C (2009) Remote monitoring of hypersaline environments in San Francisco Bay, CA, USA. Int J Remote Sens 30:2933–2949

    Google Scholar 

  • Danson MJ, Hough DW (1997) The structural basis of protein halophilicity. Comp Biochem Physiol A Physiol 117:307–312

    Google Scholar 

  • DasSarma P, Zamora RC, Müller JA, DasSarma S (2012) Genome-wide responses of the model archaeon Halobacterium sp. strain NRC-1 to oxygen limitation. J Bacteriol 194:5530–5537

    CAS  PubMed Central  PubMed  Google Scholar 

  • DasSarma P, Laye VJ, Harvey J, Reid C, Shultz J, Yarborough A, Lamb A, Koske-Phillips A, Herbst A, Molina F, Grah O, Phillips T, DasSarma S (2017) Survival of halophilic Archaea in Earth's cold stratosphere. Int J Astrobiol 16:321–327

    CAS  Google Scholar 

  • DasSarma P, Capes MD, DasSarma S (2019) Comparative Genomics of Halobacterium Strains from Diverse Locations. In: Das S, Dash HR (eds) Microbial diversity in the genomic era, 1st edn. Academic Press, pp 285–322. https://doi.org/10.1016/B978-0-12-814849-5.00017-4

    Google Scholar 

  • DasSarma P, Tuel K, Nierenberg SD, Phillips T, Pecher WT, DasSarma S (2016) Inquiry-driven teaching and learning using the archaeal microorganism Halobacterium NRC-1. Am Biol Teach 78:71–73

    Google Scholar 

  • DasSarma S (1989) Mechanisms of genetic variability in Halobacterium halobium: the purple membrane and gas vesicle mutations. Can J Microbiol 35:65–72

    CAS  PubMed  Google Scholar 

  • DasSarma S, Kennedy SP, Berquist B, Ng WV, Baliga NS, Spudich JL, Krebs MP, Eisen JA, Johnson CH, Hood L (2001) Genomic perspective on the photobiology of Halobacterium species NRC-1, a phototrophic, phototactic, and UV-tolerant haloarchaeon. Photosynth Res 70:3–17

    CAS  PubMed  Google Scholar 

  • DasSarma S (2004) Genome sequence of an extremely halophilic archaeon. In: Fraser C, Read T, Nelson KE (ed) Microbial Genomes C.M. Humana Press, Inc. Totowa, pp 383–399.

  • DasSarma S (2006) Extreme halophiles are models for astrobiology. Microbe Am Soc Microbiol 1:120–126

    Google Scholar 

  • DasSarma S, Berquist BR, Coker JA, DasSarma P, Müller JA (2006) Post-genomics of the model haloarchaeon Halobacterium sp. NRC-1. Saline Syst 2:3.

    PubMed Central  PubMed  Google Scholar 

  • DasSarma S (2007) Extreme microbes. Am Sci 95:224–231

    Google Scholar 

  • DasSarma S, Capes M, DasSarma P (2009) Haloarchaeal megaplasmids. In: Schwartz E (ed) Microbial megaplasmids. Springer, pp 3–30. https://doi.org/10.1007/7171_2008_17

  • DasSarma S, Capes MD, Karan R, DasSarma P (2013) Amino acid substitutions in cold-adapted proteins from Halorubrum lacusprofundi, an extremely halophilic microbe from Antarctica. PLoS One 8:e58587

    CAS  PubMed Central  PubMed  Google Scholar 

  • DasSarma S, DasSarma P (2015) Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 25:120–126

    CAS  PubMed Central  PubMed  Google Scholar 

  • DasSarma S, DasSarma P (2017) Halophiles. In: Encyclopedia of life sciences. Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0000394.pub4

  • DasSarma S, DasSarma P (2018) Survival of microbes in Earth's stratosphere. Curr Opin Microbiol. https://doi.org/10.1016/j.mib.2017.11.002.

    CAS  PubMed  Google Scholar 

  • DasSarma S, Schwieterman EW (2019) Early evolution of purple retinal pigments on Earth and implications for exoplanet biosignatures. Int J Astrobiol. https://doi.org/10.1017/S1473550418000423

    Article  Google Scholar 

  • de la Vega M, Sayago A, Ariza J, Barneto AG, León R (2016) Characterization of a bacterioruberin-producing Haloarchaea isolated from the marshlands of the Odiel river in the southwest of Spain. Biotechnol Prog 32:592–600. https://doi.org/10.1002/btpr.2248

    Article  CAS  PubMed  Google Scholar 

  • DeVeaux LC, Müller JA, Smith J, Petrisko J, Wells DP, DasSarma S (2007) Extremely radiation-resistant mutants of a halophilic archaeon with increased single-stranded DNA-binding protein (RPA) gene expression. Radiat Res 168:507–514

    CAS  PubMed  Google Scholar 

  • Dummer AM, Bonsall JC, Cihla JB, Lawry SM, Johnson GC, Peck RF (2011) Bacterioopsin-mediated regulation of bacterioruberin biosynthesis in Halobacterium salinarum. J Bacteriol JB. 05376–05311.

  • Esclapez J, Pire C, Bautista V, Martínez-Espinosa R, Ferrer J, Bonete M (2007) Analysis of acidic surface of Haloferax mediterranei glucose dehydrogenase by site-directed mutagenesis. FEBS Lett 581:837–842

    CAS  PubMed  Google Scholar 

  • Fang C-J, Ku K-L, Lee M-H, Su N-W (2010) Influence of nutritive factors on C50 carotenoids production by Haloferax mediterranei ATCC 33500 with two-stage cultivation. Biores Technol 101:6487–6493

    CAS  Google Scholar 

  • Fenchel T (2002) The origin and early evolution of life. Oxford University Press, Oxford

    Google Scholar 

  • Finkel OM, Béja O, Belkin S (2013) Global abundance of microbial rhodopsins. The ISME J 7:448

    CAS  PubMed  Google Scholar 

  • Fujii Y, Angerhausen D, Deitrick R, Domagal-Goldman S, Grenfell JL, Hori Y, Kane SR, Pallé E, Rauer H, Siegler N (2018) Exoplanet biosignatures: observational prospects. Astrobiology 18:739–778

    PubMed Central  PubMed  Google Scholar 

  • Gates DM, Keegan HJ, Schleter JC, Weidner VR (1965) Spectral properties of plants. Appl Opt 4:11–20

    Google Scholar 

  • Grant WD, Gemmell RT, McGenity TJ (1998) Halobacteria: the evidence for longevity. Extremophiles 2:279–287

    CAS  PubMed  Google Scholar 

  • Hahn J, Haug P (1986) Traces of archaebacteria in ancient sediments. Syst Appl Microbiol 7:178–183

    CAS  Google Scholar 

  • Hecht M, Kounaves S, Quinn R, West S, Young S, Ming D, Catling D, Clark B, Boynton W, Hoffman J, DeFlores LP, Gospodinova K, Kapit J, Smith PH (2009) Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science 325:64–67

    CAS  PubMed  Google Scholar 

  • Hegde S, Paulino-Lima IG, Kent R, Kaltenegger L, Rothschild L (2015) Surface biosignatures of exo-Earths: remote detection of extraterrestrial life. Proc Natl Acad Sci 112:3886–3891

    CAS  PubMed  Google Scholar 

  • Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74:121–156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karan R, Capes MD, DasSarma S (2012) Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biosyst 8:4

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karan R, Capes MD, DasSarma P, DasSarma S (2013) Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi. BMC Biotechnol 13:1

    Google Scholar 

  • Karan R, DasSarma P, Balcer-Kubiczek E, Weng RR, Liao C-C, Goodlett DR, Ng WV, DasSarma S (2014) Bioengineering radioresistance by overproduction of RPA, a mammalian-type single-stranded DNA-binding protein, in a halophilic archaeon. Appl Microbiol Biotechnol 98:1737–1747

    CAS  PubMed  Google Scholar 

  • Kennedy SP, Ng WV, Salzberg SL, Hood L, DasSarma S (2001) Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genom Res 11:1641–1650

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kilic V, Kilic GA, Kutlu HM, Martínez-Espinosa RM (2017) Nitrate reduction in Haloferax alexandrinus: the case of assimilatory nitrate reductase. Extremophiles 21:551–561. https://doi.org/10.1007/s00792-017-0924-4

    Article  CAS  PubMed  Google Scholar 

  • Knipling EB (1970) Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sens Environ 1:155–159

    Google Scholar 

  • Koonin EV (2015) Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier? Philos Trans R Soc Lond B Biol Sci 370:20140333. https://doi.org/10.1098/rstb.2014.0333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krebs MP, Khorana HG (1993) Mechanism of light-dependent proton translocation by bacteriorhodopsin. J Bacteriol 175:1555–1560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kushwaha SC, Kates M, Porter JW (1976) Enzymatic synthesis of C40 carotenes by cell-free preparation from Halobacterium cutirubrum. Can J Biochem 54:816–823

    CAS  PubMed  Google Scholar 

  • Landis GA (2001) Martian water: are there extant halobacteria on mars? Astrobiology 1(2):161–164

    Google Scholar 

  • Laye VJ, Karan R, Kim J-M, Pecher WT, DasSarma P, DasSarma S (2017) Key amino acid residues conferring enhanced enzyme activity at cold temperatures in an Antarctic polyextremophilic β-galactosidase. Proc Natl Acad Sci 114:12530–12535. https://doi.org/10.1073/pnas.1711542114

    Article  CAS  PubMed  Google Scholar 

  • Laye VJ, DasSarma S (2018) An Antarctic extreme halophile and its polyextremophilic enzyme: Effects of perchlorate salts. Astrobiology. https://doi.org/10.1017/S1473550416000410

    Google Scholar 

  • Lingam M, Loeb A (2017) Natural and artificial spectral edges in exoplanets. Monthly Notices of the Royal Astronomical Society: Letters

  • Lissauer JJ, Dawson RI, Tremaine S (2014) Advances in exoplanet science from Kepler. Nature 513:336

    CAS  PubMed  Google Scholar 

  • Mancinelli RL, Hochstein LI (1986) The occurrence of denitrification in extremely halophilic bacteria. FEMS Microbiol Lett 35:55–58

    CAS  PubMed  Google Scholar 

  • Martínez-Espinosa RM, Richardson DJ, Bonete MJ (2014) Characterisation of chlorate reduction in the haloarchaeon Haloferax mediterranei. Biochim Biophys Acta 1850:587–594. https://doi.org/10.1016/j.bbagen.2014.12.011

    Article  CAS  PubMed  Google Scholar 

  • McCready S (1996) The repair of ultraviolet light-induced DNA damage in the halophilic archaebacteria, Halobacterium cutirubrum, Halobacterium halobium and Haloferax volcanii. Mutat Res DNA Repair 364:25–32

    PubMed  Google Scholar 

  • McCready S, Müller JA, Boubriak I, Berquist BR, Ng WL, DasSarma S (2005) UV irradiation induces homologous recombination genes in the model archaeon, Halobacterium sp. NRC-1. Saline Syst 1:3.

    PubMed Central  PubMed  Google Scholar 

  • Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S, Giovannelli D (2019) Living at the extremes: extremophiles and the limits of life in a planetary context. Front Microbiol 10:780. https://doi.org/10.3389/fmicb.2019.00780

    Article  PubMed Central  PubMed  Google Scholar 

  • Morrison D (2001) The NASA astrobiology program. Astrobiology 1:3–13

    CAS  PubMed  Google Scholar 

  • Müller JA, DasSarma S (2005) Genomic analysis of anaerobic respiration in the archaeon Halobacterium sp. strain NRC-1: dimethyl sulfoxide and trimethylamine N-oxide as terminal electron acceptors. J Bacteriol 187:1659–1667

    PubMed Central  PubMed  Google Scholar 

  • Müller WJ, Smit MS, van Heerden E, Capes MD, DasSarma S (2019) Complex effects of cytochrome P450 monooxygenase on purple membrane and bacterioruberin production in an extremely halophilic archaeon: genetic, phenotypic, and transcriptomic analyses. Front Microbiol 9:2563. https://doi.org/10.3389/fmicb.2018.02563

    Article  Google Scholar 

  • Ng WV, Ciufo SA, Smith TM, Bumgarner RE, Baskin D, Faust J, Hall B, Loretz C, Seto J, Slagel J (1998) Snapshot of a large dynamic replicon in a halophilic archaeon: megaplasmid or minichromosome? Genome Res 8:1131–1141

    CAS  PubMed  Google Scholar 

  • Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J, Swartzell S, Weir D, Hall J, Dahl TA, Welti R, Goo YA, Leithauser B, Keller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE, Krebs MP, Angevine CM, Dale H, Isenbarger TA, Peck RF, Pohlschroder M, Spudich JL, Jung K-H, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omer AD, Ebhardt H, Lowe TM, Liang P, Riley M, Hood L, DasSarma S (2000) Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci 97:12176–12181

    CAS  PubMed  Google Scholar 

  • Noffke N, Christian D, Wacey D, Hazen RM (2013) Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara. West Aust Astrobiol 13:1103–1124

    CAS  Google Scholar 

  • Peck RF, DasSarma S, Krebs MP (2000) Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a counterselectable marker. Mol Microbiol 35:667–676

    CAS  PubMed  Google Scholar 

  • Peck RF, Echavarri-Erasun C, Johnson EA, Ng WV, Kennedy SP, Hood L, DasSarma S, Krebs MP (2001) brp and blh are required for synthesis of the retinal cofactor of bacteriorhodopsin in Halobacterium salinarum. J Biol Chem 276:5739–5744

    CAS  PubMed  Google Scholar 

  • Reid I, Sparks W, Lubow S, McGrath M, Livio M, Valenti J, Sowers K, Shukla H, MacAuley S, Miller T, Suvanasuthi R, Belas R, Colman A, Robb FT, DasSarma P, Müller JA, Coker JA, Cavicchioli R, Chen F, DasSarma S (2006) Terrestrial models for extraterrestrial life: methanogens and halophiles at Martian temperatures. Int J Astrobiol 5:89–97

    Google Scholar 

  • Roberge A, Moustakas LA (2018) The large ultraviolet/optical/infrared surveyor. Nat Astron 2:605

    Google Scholar 

  • Rodrigo-Baños M, Garbayo I, Vílchez C, Bonete MJ, Martínez-Espinosa RM (2015) Carotenoids from haloarchaea and their potential in biotechnology. Marine Drugs 13:5508–5532. https://doi.org/10.3390/md13095508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092

    CAS  PubMed  Google Scholar 

  • Schwieterman EW, Cockell CS, Meadows VS (2015) Nonphotosynthetic pigments as potential biosignatures. Astrobiology 15:341–361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwieterman EW, Kiang NY, Parenteau MN, Harman CE, DasSarma S, Fisher TM, Arney GN, Hartnett HE, Reinhard CT, Olson SL (2018) Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobiology 18:663–708

    PubMed Central  PubMed  Google Scholar 

  • Seager S, Turner EL, Schafer J, Ford EB (2005) Vegetation's red edge: a possible spectroscopic biosignature of extraterrestrial plants. Astrobiology 5:372–390

    CAS  PubMed  Google Scholar 

  • Söll D, Rajbhandary UL (2006) The genetic code-thawing the ‘frozen accident’. J Biosci 31:459–463

    PubMed  Google Scholar 

  • Sorokin DY, Makarova KS, Abbas B, Ferrer M, Golyshin PN, Galinski EA, Ciordia S, Mena MC, Merkel AY, Wolf YI, van Loosdrecht MCM, Koonin EV (2019) Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nature Microbiol 2:17081. https://doi.org/10.1038/nmicrobiol.2017.81

    Article  CAS  Google Scholar 

  • Stoeckenius W, Bogomolni RA (1982) Bacteriorhodopsin and related pigments of halobacteria. Annu Rev Biochem 51:587–616

    CAS  PubMed  Google Scholar 

  • Sumper M, Reitmeier H, Oesterhelt D (1976) Biosynthesis of the purple membrane of halobacteria. Angew Chem Int Ed Engl 15:187–194

    CAS  PubMed  Google Scholar 

  • Walker SI, Bains W, Cronin L, DasSarma S, Danielache S, Domagal-Goldman S, Kacar B, Kiang NY, Lenardic A, Reinhard CT (2018) Exoplanet biosignatures: future directions. Astrobiology 18:779–824

    PubMed Central  PubMed  Google Scholar 

  • Wang G, Kennedy SP, Fasiludeen S, Rensing C, DasSarma S (2004) Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J Bacteriol 186:3187–3194

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Y, Yatsunami R, Ando A., Miyoko N, Fukui T, Takaichi S, Nakamura S (2015) Complete biosynthetic pathway of the C50 carotenoid bacterioruberin from lycopene in the extremely halophilic archaeon Haloarcula japonica. J Bacteriol JB 02523–02514.

  • Yang CF, Kim JM, Molinari E, DasSarma S (1996) Genetic and topological analyses of the bop promoter of Halobacterium halobium: stimulation by DNA supercoiling and non-B-DNA structure. J Bacteriol 178:840–845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yim KJ, Kwon J, Cha IT, Oh KS, Song HS, Lee HW, Rhee JK, Song EJ, Rho JR, Seo ML, Choi JS, Choi HJ, Lee SJ, Nam YD, Roh SW (2015) Occurrence of viable, red-pigmented haloarchaea in the plumage of captive flamingoes. Sci Rep 5:16425. https://doi.org/10.1038/srep16425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Exobiology research in the S.D. laboratory is supported by National Aeronautics and Space Administration (NASA) Grants NNX15AM07G and NNH18ZDA001N and biomedical research is supported by National Institutes of Health (NIH) grant R21 AI139808. E.S. is supported by a NASA Postdoctoral Program Fellowship, administered by the Universities Space Research Association, and by the NASA Astrobiology Institute’s Alternative Earths and Virtual Planetary Laboratory teams under Cooperative Agreement Nos. NNA15BB03A and NNA13AA93A, respectively. The Virtual Planetary Laboratory is also supported by the NASA Astrobiology Program under Grant Number 80NSSC18K0829.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiladitya DasSarma.

Additional information

Communicated by S. Albers.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DasSarma, S., DasSarma, P., Laye, V.J. et al. Extremophilic models for astrobiology: haloarchaeal survival strategies and pigments for remote sensing. Extremophiles 24, 31–41 (2020). https://doi.org/10.1007/s00792-019-01126-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-019-01126-3

Keywords

Navigation