Skip to main content
Log in

Enhancement of gene expression in Escherichia coli and characterization of highly stable ATP-dependent glucokinase from Pyrobaculum calidifontis

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The genome of the hyperthermophilic archaeon Pyrobaculum calidifontis contains an open reading frame, Pcal_1032, annotated as glucokinase. Amino acid sequence analysis showed that Pcal_1032 belonged to ROK (repressor, open reading frame, and kinase) family of sugar kinases. To examine the properties of Pcal_1032, the coding gene was cloned and expressed in Escherichia coli. However, expression of the gene was low resulting in a poor yield of the recombinant protein. A single site directed mutation in Pcal_1032 gene, without altering the amino acid sequence, resulted in approximately tenfold higher expression. Purified recombinant Pcal_1032 efficiently phosphorylated various hexoses with a marked preference for glucose. ATP was the most preferred phosphoryl group donor. Optimum temperature and pH for the glucokinase activity of Pcal_1032 were 95 °C and 8.5, respectively. Catalytic efficiency (k cat/K m) towards glucose was 437 mM−1 s−1. The recombinant enzyme was highly stable against temperature with a half-life of 25 min at 100 °C. In addition, Pcal_1032 was highly stable in the presence of denaturants. There was no significant change in the CD spectra and enzyme activity of Pcal_1032 even after overnight incubation in the presence of 8 M urea. To the best of our knowledge, Pcal_1032 is the most active and highly stable glucokinase characterized to date from archaea, and this is the first description of the characterization of a glucokinase from genus Pyrobaculum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amo T, Paje ML, Inagaki A, Ezaki S, Atomi H, Imanaka T (2000) Pyrobaculum calidifontis sp. nov., a novel hyperthermophilic archaeon that grows in atmospheric air. Archaea 1:113–121

    Article  Google Scholar 

  • Atomi H, Fukui T, Kanai T, Morikawa M, Imanaka T (2004) Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. Archaea 1:263–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin RL (2007) Energetics of protein folding. J Mol Biol 371:283–301

    Article  CAS  PubMed  Google Scholar 

  • Bibi T, Perveen S, Aziz I, Bashir Q, Rashid N, Imanaka T, Akhtar M (2016) Pcal_1127, a highly stable and efficient ribose-5-phosphate pyrophosphokinase from Pyrobaculum calidifontis. Extremophiles 20:821–830

    Article  CAS  PubMed  Google Scholar 

  • Chohan SM, Rashid N (2013) TK1656, a thermostable l-asparaginase from Thermococcus kodakaraensis, exhibiting highest ever reported enzyme activity. J Biosci Bioeng 116:438–443

    Article  CAS  PubMed  Google Scholar 

  • Dörr C, Zaparty M, Tjaden B, Brinkmann H, Siebers B (2003) The hexokinase of the hyperthermophile Thermoproteus tenax ATP-dependent hexokinases and ADP-dependent glucokinases, two alternatives for glucose phosphorylation in archaea. J Biol Chem 278:18744–18753

    Article  PubMed  Google Scholar 

  • Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15:352–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gharib G, Rashid N, Bashir Q, Gardner QT, Akhtar M, Imanaka T (2016) Pcal_1699, an extremely thermostable malate dehydrogenase from hyperthermophilic archaeon Pyrobaculum calidifontis. Extremophiles 20:57–67

    Article  CAS  PubMed  Google Scholar 

  • Goward CR, Hartwell R, Atkinson T, Scawen MD (1986) The purification and characterization of glucokinase from the thermophile Bacillus stearothermophilus. Biochem J 237:415–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han B, Liu H, Hu X, Cai Y, Zheng D, Yuan Z (2007) Molecular characterization of a glucokinase with broad hexose specificity from Bacillus sphaericus strain C3-41. Appl Environ Microbiol 73:3581–3586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen T, Schonheit P (2003) ATP-dependent glucokinase from the hyperthermophilic bacterium Thermotoga maritima represents an extremely thermophilic ROK glucokinase with high substrate specificity. FEMS Microbiol Lett 226:405–411

    Article  CAS  PubMed  Google Scholar 

  • Hansen T, Reichstein B, Schmid R, Schonheit P (2002) The first archaeal ATP-dependent glucokinase from the hyperthermophilic crenarchaeon Aeropyrum pernix, represents a monomeric, extremely thermophilic ROK glucokinase with broad hexose specificity. J Bacteriol 184:5955–5965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hensel R (1993) Proteins of extreme thermophiles. New Comp Biochem 26:209–221

    Article  CAS  Google Scholar 

  • Hsieh PC, Shenoy BC, Samols D, Phillips NFB (1996) Cloning, expression and characterization of polyphosphate glucokinase from Mycobacterium tuberculosis. J Biol Chem 271:4909–4915

    Article  CAS  PubMed  Google Scholar 

  • Imriskova I, Arreguin-Espinosa R, Guzman S, Rodriguez-Sanoja R, Langley E, Sanchez S (2005) Biochemical characterization of the glucose kinase from Streptomyces coelicolor compared to Streptomyces peucetius var. caesius. Res Microbiol 156:361–366

    Article  CAS  PubMed  Google Scholar 

  • Kengen SW, Tuininga JE, de Bok FA, Stams AJ, de Vos WM (1995) Purification and characterization of a novel ADP-dependent glucokinase from the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem 270:30453–30457

    Article  CAS  PubMed  Google Scholar 

  • Koga S, Yoshioka I, Sakuraba H, Takahashi M, Sakasegawa S, Shimizu S, Ohshima T (2000) Biochemical characterization, cloning, and sequencing of ADP-dependent (AMP-forming) glucokinase from two hyperthermophilic archaea, Pyrococcus furiosus and Thermococcus litoralis. J Biochem 128:1079–1085

    Article  CAS  PubMed  Google Scholar 

  • Labes A, Schönheit P (2003) ADP-dependent glucokinase from the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324. Arch Microbiol 180:69–75

    Article  CAS  PubMed  Google Scholar 

  • Lunin VV, Li Y, Schrag JD, Iannuzzi P, Cygler M, Matte A (2004) Crystal Structures of Escherichia coli ATP-dependent glucokinase and its complex with glucose. J Bacteriol 186:6915–6927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesak LR, Mesak FM, Dahl MK (2004) Bacillus subtilis GlcK activity requires cysteines within a motif that discriminates microbial glucokinases into two lineages. BMC Microbiol 4:1–10

    Article  Google Scholar 

  • Morikawa M, Izawa Y, Rashid N, Hoaki T, Imanaka T (1994) Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Appl Environ Microbiol 60:4559–4566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muir JM, Russell RJ, Hough DW, Danson MJ (1995) Citrate synthase from the hyperthermophilic archaeon, Pyrococcus furiosus. Protein Eng 8:583–592

    Article  CAS  PubMed  Google Scholar 

  • Pace CN (2009) Energetics of protein hydrogen bonds. Nat Struct Mol Biol 16:681–682

    Article  CAS  PubMed  Google Scholar 

  • Porter EV, Chassy BM, Holmlund CE (1982) Purification and kinetic characterization of a specific glucokinase from Streptococcus mutans OMZ70 cells. Biochim Biophys Acta 709:178–186

    Article  CAS  PubMed  Google Scholar 

  • Rashid N, Morikawa M, Imanaka T (1997) Gene cloning and characterization of recombinant ribose phosphate pyrophosphokinase from a hyperthermophilic archaeon. J Biosci Bioeng 83:412–418

    CAS  Google Scholar 

  • Rasool N, Rashid N, Iftikhar S, Akhtar M (2010) N-terminal deletion of Tk1689, a subtilisin-like serine protease from Thermococcus kodakaraensis, copes with its cytotoxicity in Escherichia coli. J Biosci Bioeng 110:381–385

    Article  CAS  PubMed  Google Scholar 

  • Ronimus RS, Morgan HW (2004) Cloning and biochemical characterization of a novel mouse ADP-dependent glucokinase. Biochem Biophys Res Commun 315:652–658

    Article  CAS  PubMed  Google Scholar 

  • Russell RJ, Taylor GL (1995) Engineering thermostability: lessons from thermophilic proteins. Curr Opin Biotechnol 6:370–374

    Article  CAS  PubMed  Google Scholar 

  • Russell RJ, Ferguson JMC, Haugh DW, Danson MJ, Taylor GL (1997) The crystal structure of citrate synthase from the hyperthermophilic archaeon Pyrococcus furiosus at 1.9 Å resolution. Biochemistry 36:9983–9994

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba H, Yoshioka I, Koga S, Takahashi M, Kitahama Y, Satomura T, Kawakami R, Ohshima T (2002) ADP-dependent glucokinase/phosphofructokinase, a novel bifunctional enzyme from the hyperthermophilic archaeon Methanococcus jannaschii. J Biol Chem 277:12495–12498

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba H, Mitani Y, Goda S, Kawarabayasi Y, Ohshima T (2003) Cloning, expression, and characterization of the first archaeal ATP-dependent glucokinase from aerobic hyperthermophilic archaeon Aeropyrum pernix. J Biochem 133:219–224

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba H, Goda S, Ohshima T (2004) Unique sugar metabolism and novel enzymes of hyperthermophilic archaea. Chem Rec 3:281–287

    Article  CAS  PubMed  Google Scholar 

  • Titgemeyer F, Reizer J, Reizer A, Saier MH Jr (1994) Evolutionary relationships between sugar kinases and transcriptional repressors in bacteria. Microbiology 140:2349–2354

    Article  CAS  PubMed  Google Scholar 

  • Tu J, Tuch BE (1996) Glucose regulates the maximal velocities of glucokinase and glucose utilization in the immature fetal rat pancreatic islet. Diabetes 45:1068–1075

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Henze K, Müller M (2001) Evolutionary relationships of the glucokinase from the amitochondriate protist, Trichomonas vaginalis. Gene 264:265–271

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by an NRPU Grant No. 20-2024 to NR from Higher Education Commission of Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naeem Rashid.

Additional information

Communicated by L. Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibi, T., Ali, M., Rashid, N. et al. Enhancement of gene expression in Escherichia coli and characterization of highly stable ATP-dependent glucokinase from Pyrobaculum calidifontis . Extremophiles 22, 247–257 (2018). https://doi.org/10.1007/s00792-017-0993-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-017-0993-4

Keywords

Navigation